Scientific Notes of the State University of Information and Communication Technology
https://journals.dut.edu.ua/index.php/sciencenotes
<div> <strong><span lang="EN-US">The magazine is included in category B:</span></strong> <div><span lang="EN-US">- in specialty 172 - Electronic communications and radio engineering (order of the Ministry of Education and Science of Ukraine from the 08.23.2023 </span>№<span lang="EN-US">1035).</span></div> <div><span lang="EN-US">- by specialty 122 - Computer science (order of the Ministry of Education and Science of Ukraine from the 10.25.2023 </span>№<span lang="EN-US">1309).</span></div> <div><span lang="EN-US">- in specialty 125 - Cybersecurity and information protection (order of the Ministry of Education and Science of Ukraine from the 10.25.2023 </span>№<span lang="EN-US">1309).</span></div> </div> <p><img style="width: 500px;" src="/public/site/images/dutjournals/Cover1.jpg"></p> <p><a href="https://www.crossref.org/06members/50go-live.html" target="_blank" rel="noopener"><strong><img src="/public/site/images/dutjournals/cross.jpg"></strong></a></p> <p><strong>The title of the journal: </strong>Scientific Notes of the State University of Information and Communication Technologies.<br> From 2006 to 2020, the journal was published under the title "Scientific Notes of the Ukrainian Research Institute of Communications".<br> <strong>Founder:</strong> State University of Information and Communication Technologies.<br> <strong>Foundation year:</strong> 2021.</p> <p><strong>License of the National Council of Ukraine on Television and Radio Broadcasting: </strong>The State University of Information and Communication Technologies is included in the Register of Media Entities. Identifier of the scientific journal "Research Notes of the State University of Information and Communication Technologies": R30-02947 (decision No. 863 of March 21, 2024).<br> <strong>Certificate of state registration:</strong> КВ № 24994-14934ПР from 20.09.2021.<br> <strong>ISSN: </strong><a href="https://portal.issn.org/resource/ISSN/2786-8362"><strong>2786-8362</strong></a><br> <strong>UDC:</strong> 004:621<br> <strong>Specialties of MES:</strong> The journal may publish the results of dissertation research for the scientific degrees of Doctor of Science and Doctor of Philosophy in specialties 122, 125, 172.<br> <strong>Frequency of issue: </strong>2 times a year.<br> <strong>Address:</strong> Solomyanska str., 7, Kyiv, 03110, Ukraine.<br> <strong>Phone:</strong> +380 (97) 509 00 33<br> <strong>E-mail:</strong> <a href="http://makarenkoa@ukr.net/">makarenkoa@ukr.net<br> </a><strong>Web-site:</strong> <a href="https://journals.dut.edu.ua/index.php/sciencenotes">http://journals.dut.edu.ua</a></p> <p>Articles published in the scientific journal "Scientific Notes of the State University of Information and Communication Technologies" are indexed in the science-based databases:</p> <p><strong><a href="http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?Z21ID=&I21DBN=UJRN&P21DBN=UJRN&S21STN=1&S21REF=10&S21FMT=juu_all&C21COM=S&S21CNR=20&S21P01=0&S21P02=0&S21P03=PREF=&S21COLORTERMS=0&S21STR=snsut" target="_blank" rel="noopener"><img src="/public/site/images/dutjournals/vern.jpg"></a> <a href="https://journals.indexcopernicus.com/search/details?id=125663" target="_blank" rel="noopener"><img style="height: 70px;" src="/public/site/images/dutjournals/logo_glowne_1000.png"></a> <img src="/public/site/images/dutjournals/crossref.jpg"> <img src="/public/site/images/dutjournals/google.jpg"> </strong></p>
uk-UA
Scientific Notes of the State University of Information and Communication Technology
2518-7678
-
Title
https://journals.dut.edu.ua/index.php/sciencenotes/article/view/3200
<p>Title</p>
admin admin
##submission.copyrightStatement##
2025-06-21
2025-06-21
1
1
2
-
Content
https://journals.dut.edu.ua/index.php/sciencenotes/article/view/3201
<p>Content</p>
admin admin
##submission.copyrightStatement##
2025-06-21
2025-06-21
1
3
6
-
FUNCTIONALSTATISTICAL MODELS OF CONTROL AND MANAGEMENT OBJECTS
https://journals.dut.edu.ua/index.php/sciencenotes/article/view/3202
<p>In a modern infocommunication network, the object<br>of control and management can be any information network equipment, as well as the entire network as a<br>whole. In this case, the network is considered as a complex system that is subject to management. The<br>complexity of the control and management process is largely determined by the complexity of the objects. To<br>describe the functioning of the object, it would be advisable to build its mathematical model. The state of an<br>object is most fully characterized by a mathematical functional-statistical model – a system of equations or<br>operators that describe the dependence of the initial parameters of an object, system or unit on external or<br>internal influences during operation. Based on the analysis of this model, it is possible to formulate the main<br>tasks solved by the automatic control and management system, as well as synthesize the optimal network<br>management system, determine the degree of automation and its effectiveness.<br>When constructing a mathematical functional-statistical model, it is necessary to take into account that<br>a network as a control object can consist of systems of various classes and types. Such systems can be<br>autonomous and non-autonomous, stationary and non-stationary, closed and open. Therefore, to construct a<br>mathematical functional-statistical model, it is necessary to use a sufficiently generalized mathematical<br>apparatus, which, with appropriate changes, can be extended to individual cases.<br><strong>Keywords</strong>: network management, control and management system, functional-statistical model, control<br>and management object, synthesis, optimal system, delay, availability factor, Monte Carlo method</p> <p><strong>References</strong><br>1. Л.Н. Беркман, Л.О. Комарова, О.І. Чумак. Основні поняття та теореми теорії інформації<br>: навч. посіб. Київ : ДУІКТ, 2015. 91 с.<br>2. 6G Wireless Communication Systems: Applications, Opportunities and Challenges / K. Anoh<br>et al. Future Internet. 2022. Vol. 14, no. 12. P. 379. URL: https://doi.org/10.3390/fi14120379.<br>3. Ramirez Villamarin C., Suazo E., Oraby T. Regularization by deep learning in signal<br>processing. Signal, Image and Video Processing. 2024. URL: https://doi.org/10.1007/s11760-024-<br>03083-7.<br>4. Ferreira M. F. S., Pinto A. N., Hübel H. Quantum Communications. Fiber and Integrated<br>Optics. 2020. P. 1–2. URL: https://doi.org/10.1080/01468030.2020.1712536<br>5. Digital Signal Processing Using Deep Neural Networks / B. Shevitski et al. Office of<br>Scientific and Technical Information (OSTI), 2023. URL: https://doi.org/10.2172/1984848.<br>6. Zeybek M., Kartal Çetin B., Engin E. Z. A Hybrid Approach to Semantic Digital Speech:<br>Enabling Gradual Transition in Practical Communication Systems. Electronics. 2025. Vol. 14, no. 6.<br>P. 1130. URL: https://doi.org/10.3390/electronics14061130.<br>7. Balaji C., Sivaram P. Adaptive Beamforming and Energy-Efficient Resource Allocation for<br>Sustainable 6G THz Networks. IETE Journal of Research. 2025. P. 1–15.<br>URL: https://doi.org/10.1080/03772063.2025.2460672.</p>
Галаган Н. В. (Halahan N.V.)
Каток В. Б. (Katok V.B.)
Беркман Л. Н. (Berkman L.N.)
Захаржевський А. Г. (Zakharzhevskyi A.H.)
Демусь А. Я. (Demus A.Ya.)
##submission.copyrightStatement##
2025-06-21
2025-06-21
1
7
14
-
CYBERSECURITY METHODS FOR THE INTERNET OF THINGS NETWORK IN THE FIELD OF LABORATORY RESEARCH DATA TRANSMISSION
https://journals.dut.edu.ua/index.php/sciencenotes/article/view/3203
<p>The paper analyzed methods of protecting sensor networks of the Internet of Things in the<br>field of laboratory tests. The role of methods of protecting sensor networks in the context of existing threats<br>to the sensor network was studied, taking into account different types of attacks with the probable use of<br>different types of sensor connections and actuators. The considered network-level protection methods were<br>grouped, which can be used to solve laboratory test tasks by using sensor networks based on IoT technology,<br>into five categories: network segmentation, intrusion identification, secure routing, protection of actuators,<br>protection of the MQTT protocol. A system of methods for protecting IoT networks in the field of<br>laboratory testing has been formed, which takes into account both general methods for protecting wireless<br>networks and a group of special methods for protecting IoT sensor networks, as well as the influence of<br>methods for protecting the perception, support and application levels and the network level in the general<br>security model. The interrelationships of individual methods within the framework of interaction with<br>different groups to solve the problem of protecting wireless sensor IoT networks when used in laboratory<br>tests have been studied. A number of advantages and disadvantages that the groups of considered methods<br>provide for laboratory test tasks have been formed and the path for further development of these methods<br>has been outlined in order to increase the level of efficiency and quality of laboratory tests and the accuracy<br>of laboratory measurements. The practical significance of the work lies in the possibility of using a system<br>of interconnected methods to achieve the maximum level of protection when using sensor networks in the<br>laboratory for the further implementation of existing methods in real conditions and the development of<br>new methods to increase the effectiveness of protection.<br><strong>Keywords</strong>: sensor network, IoT, laboratory testing, automated laboratories, network layer security,<br>wireless sensor networks</p> <p><strong>References</strong><br>1. Бездротові мережі “розумних” мультисенсорів та біосенсорних приладів для експресдіагностики стану виноградних і плодоягідних культур та контролю якості продуктів<br>виноробства / В.О. Романов та ін. Кібернетика та комп’ютерні технології. 2023. № 1. С. 58-<br>73. URL: https://doi.org/10.34229/2707-451X.23.1.6.<br>2. Волошко С.В., Курца Д.О. Інформаційна безпека в безпроводових сенсорних мережах.<br>Новітні інформаційні системи та технології. 2018. Вип. 9. URL:<br>https://journals.nupp.edu.ua/mist/article/view/1039. <br>3. Digital trust in a connected world: navigating the state of IoT secutity. Keyfactor,<br>VansonBourne, 2023. URL: https://www.keyfactor.com/state-of-iot-security-report-2023<br>4. Прокопович-Ткаченко Д.І., Звєрєв В.П., Козаченко І.М. Кіберзагрози та методи захисту<br>фізичної інфраструктури промислового Інтернету речей (ILOT). Вчені записки ТНУ імені<br>В.І. Вернадського. Серія: Технічні науки. 2025. Том 36 (75), № 1. С. 218-225. URL:<br>https://doi.org/10.32782/2663-5941/2025.1.2/32.<br>5. Методи захисту інформації в технологіях ІоТ / Я. Олійник та ін. Кібербезпека: освіта,<br>наука, техніка. 2025. Том 3, № 27. С. 100-108. URL: https://doi.org/10.28925/2663-<br>4023.2025.27.705.<br>6. Kardi A., Zagrouba R. Attacks classification and security mechanisms in wireless sensor<br>networks. Advances in Science, Technology and Engineering Systems Journal. 2019. Vol. 4, № 6. P.<br>229-243. URL: https://dx.doi.org/10.25046/aj040630.<br>7. Complete security framework for wireless sensor networks / Sharma K. et al. arXiv. 2009.<br>URL: https://doi.org/10.48550/arXiv.0908.0122.<br>8. Коваленко О.Є. Моделі безпеки Інтернету речей. Математичні машини і системи.<br>2023. № 4. С. 43-50. URL: https://doi.org/10.34121/1028-9763-2023-4-43-50.<br>9. Стервоєдов М.Г., Терьохін В.Л. Розробка мережевої інфраструктури ІоТ на базі<br>сенсорної мережі розподілених датчиків для вимірювання радіаційного забруднення з<br>використанням багаторівневої архітектури. Вісник Харківського національного університету<br>імені В.Н. Каразіна серія “Математичне моделювання. Інформаційні технології.<br>Автоматизовані системи управління”. 2020. № 48. С. 89-97. URL:<br>https://doi.org/10.26565/2304-6201-2020-48-09.<br>10. Модель забезпечення кібербезпеки Інтернету речей / Г.І. Гайдур та ін.<br>Телекомунікаційні та інформаційні технології. 2024. № 2(83). С. 4-13. URL:<br>https://doi.org/10.31673/2412-4338.2024.020515.<br>11. Лісовий І.В., Войтович О.П., Волинець О.Ю. Рекомендації забезпечення безпеки<br>бездротових з’єднань Інтернету речей. Матеріали LIII науково-технічної конференції<br>підрозділів ВНТУ Вінниця 20-22 березня 2024 р. URL:<br>https://conferences.vntu.edu.ua/index.php/all-fitki/all-fitki-2024/paper/view/20423.<br>12. Pribadi: A decentralized privacy-preserving authentication in wireless multimedia sensor<br>networks for smart cities / R. Goyat et al. Cluster Computing. 2023. Vol. 26, №6. P. 4567-4583. URL:<br>https://doi.org/10.1007/s10586-023-04211-7.<br>13. A secure clustering protocol with fuzzy trust evaluation and outlier detection for industrial<br>wireless sensor networks / L. Yang et al. arXiv. 2022. URL:<br>https://doi.org/10.48550/arXiv.2207.09936.<br>14. Clustering objectives in wireless sensor networks: A survey and research direction analysis /<br>A. Shahraki et al. Computer Networks. 2020. Vol. 180. URL:<br>https://doi.org/10.1016/j.comnet.2020.107376.<br>15. Артюх С.Г. Функціональна модель підсистеми безпеки системи управління<br>безпроводовими сенсорними мережами військового призначення. Сучасні інформаційні<br>технології у сфері безпеки і оборони. 2025. № 1 (52). С. 85-92. URL:<br>https://doi.org/10.33099/2311-7249/2025-52-1-85-92.<br>16. Buczak A.L., Guven E. A survey of data mining and machine learning methods for cyber<br>security intrusion detection. IEEE Communications Surveys & Tutorials. 2016. Vol. 18, № 2. P. 1153-<br>1176. URL: https://doi.org/10.1109/COMST.2015.2494502.<br>17. Evolving machine intelligence toward tomorrow’s intelligence network traffic control<br>systems / G. Nikitha et al.. International Journal of Engineering Research in Computer Science and<br>Engineering. 2018. Vol. 5, № 4. P. 566-569.<br>18. Shallow and deep networks intrusion detection system: A taxonomy and survey / E. Hodo et<br>al. arXiv. 2017. URL: https://doi.org/10.48550/arXiv.1701.02145.<br>19. Wang L., Jones R. Big data analytics for network intrusion detection: A survey et al.<br>International Journal of Networks and Communications. 2017. Vol. 7, № 1. P. 24-31. URL:<br>https://doi.org/10.5923/j.ijnc.20170701.03.<br>20. A fuzzy logic and DEEC protocol-based clustering routing method for wireless sensor<br>networks / N. Subramani et al. AIMS Mathematics. 2023. Vol. 8, № 4. P. 8310-8331. URL:<br>https://doi.org/10.3934/math.2023419.<br>21. Trust and energy-aware routing protocol for wireless sensor networks based on secure routing<br>/ G. Muneeswari et al. International Journal of Electrical and Computer Engineering Systems. 2023.<br>Vol. 14, № 9. P. 1015-1022. URL: https://doi.org/10.32985/ijeces.14.9.6.<br>22. Тіхонов С.В. Питання кібербезпеки в базових технологіях Інтернету речей. Current<br>challenges of science and education : proceedings of XII International Scientific and Practical<br>Conference, Berlin, Germany, 29-31 July 2024 / MDPC Publishing, Berlin : 2024. С. 165-171.<br>23. Prasad P.B.N., Gopalan K.D.R.S. Exploiting physical dynamics to detect actuator and sensor<br>attacks in mobile robots. arXiv. 2017. URL: https://doi.org/10.48550/arXiv.1708.01834.<br>24. Secure and authenticated data communication in wireless sensor networks / Alfandi O. et al.<br>Sensors. 2015. Vol. 15, № 8. P. 19560-19585. URL: https://doi.org/10.3390/s150819560.<br>25. Белей О.І., Логутова Т.Г. Безпека передачі даних для Інтернету речей. Кібербезпека:<br>освіта, наука, техніка. 2019. № 2 (6). С. 6-18. URL: doi.org/10.28925/2663-4023.2019.6.618.<br>26. Winarno A., Sari R.F. A novel secure end-to-end IoT communication scheme using<br>lightweight cryptography based on block cipher. Applied Science. 2022. Vol. 12, №17. URL:<br>https://doi.org/10.3390/app12178817.<br>27. Paolo E.D., Bassetti E., Spognardi A. Security assessment of common open source MQTT<br>brokers and clients. arXiv. 2023. URL: https://doi.org/10.48550/arXiv.2309.03547.</p>
Іванченко Є. В. (Ivanchenko Ye.V.)
Тарасенко Я. В. (Tarasenko Ya.V.)
Туровський О. Л. (Turovsky O.L.)
Кихтенко Є. М. (Kykhtenko Ye.M.)
Трухан Д. В. (Trukhan D.V.)
##submission.copyrightStatement##
2025-06-21
2025-06-21
1
15
25
-
5G NETWORK USER EQUIPMENT POSITIONING WITH THE USE OF TIMING ADVANCE
https://journals.dut.edu.ua/index.php/sciencenotes/article/view/3204
<p>This article is devoted to the study of positioning methods for user equipment<br>for navigation, industry and public safety. In scenarios where the use of GPS is complicated by different<br>factors, positioning can be provided using the standard functionality of the cellular network. This paper<br>discusses positioning methods in 5G networks, in particular, those based on E-CID, field strength,<br>difference in time of arrival, and LPHAP, and proposes a method based on timing advance. The proposed<br>method is aimed at simplifying the positioning procedure, ensuring high accuracy of determining the<br>location of subscriber equipment and reducing power consumption during positioning. The method of<br>reducing the error by averaging a number of TA values is investigated. Methods for reducing UE power<br>consumption in the location process for critical scenarios are investigated. Possible problems that lead to<br>discrepancies in the time synchronization required to achieve the highest possible positioning accuracy<br>when using the presented method are considered.<br><strong>Keywords</strong>: 5G, positioning, timing advance, navigation</p> <p><strong>References</strong><br>1. Preliminary performance analysis of tightly-coupled 5G/PPP positioning based on different<br>5G observations / W. Guo et al. IEEE Transactions on Instrumentation and Measurement. 2025. P. 1.<br>URL: https://doi.org/10.1109/tim.2025.3527605.<br>2. GNSS-5G Hybrid Positioning Based on Joint Estimation of Multiple Signals in a Highly<br>Dependable Spatio-Temporal Network / J. Liu et al. Remote Sensing. 2023. Vol. 15, no. 17. P. 4220.<br>URL: https://doi.org/10.3390/rs15174220.<br>3. Performance Research of RTK/5G Combined Positioning Model / F. Li et al. Measurement<br>Science and Technology. 2022. URL: https://doi.org/10.1088/1361-6501/aca8c3<br>4. Impact of Indoor Multipath Channels on Timing Advance for URLLC in Industrial IoT / S.<br>Zeb et al. 2020 IEEE International Conference on Communications Workshops (ICC Workshops),<br>Dublin, Ireland, 7–11 June 2020. 2020. URL:<br>https://doi.org/10.1109/iccworkshops49005.2020.9145066.<br>5. Shi H., Aijaz A., Jiang N. Evaluating the Performance of Over-the-Air Time Synchronization<br>for 5G and TSN Integration. 2021 IEEE International Black Sea Conference on Communications and<br>Networking (BlackSeaCom), Bucharest, Romania, 24–28 May 2021. 2021. URL:<br>https://doi.org/10.1109/blackseacom52164.2021.952783.<br>6. 5G NR Positioning Enhancements in 3GPP Release-I8 / H.-S. Cha et al. IEEE<br>Communications Magazine. 2025. Vol. 9, no. 1. P. 22–27. URL:<br>https://doi.org/10.1109/mcomstd.0001.2400006.<br>7. Zhu R., Zhang L. A 5G Positioning Method Based on Multi-fingerprint Features and Improved<br>WKNN. 2024 Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC),<br>Dalian, China, 12–14 April 2024. 2024. P. 489–493. URL:<br>https://doi.org/10.1109/ipec61310.2024.00089.<br>8. Advancements in Indoor Precision Positioning: A Comprehensive Survey of UWB and Wi-Fi<br>RTT Positioning Technologies / J. Qiao et al. Network. 2024. Vol. 4, no. 4. P. 545–566. URL:<br>https://doi.org/10.3390/network4040027.<br>9. Enabling Low-Power High-Accuracy Positioning (LPHAP) in 3GPP NR Standards / Y. Wang<br>et al. 2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Lloret de<br>Mar, Spain, 29 November – 2 December 2021. 2021. URL:<br>https://doi.org/10.1109/ipin51156.2021.9662628.<br>10. Njoku F. C., Ibikunle F., Adikpe A. O. A Review on Discontinuous Reception Mechanism<br>as a Power Saving Approach for 5G User Equipments at Millimetre-Wave Frequencies. 2023<br>International Conference on Science, Engineering and Business for Sustainable Development Goals<br>(SEB-SDG), Omu-Aran, Nigeria, 5–7 April 2023. 2023. URL: https://doi.org/10.1109/sebsdg57117.2023.10124494.</p>
Горохов О. С. (Horokhov O.S.)
Яковець В. П. (Yakovets V.P.)
Макаренко А. О. (Makarenko A.O.)
##submission.copyrightStatement##
2025-06-21
2025-06-21
1
26
32
-
OPTIMIZATION OF FORECASTING THROUGH INCORPORATION OF CAUSAL INFLUENCE
https://journals.dut.edu.ua/index.php/sciencenotes/article/view/3205
<p>The article explores approaches to improving forecasting accuracy by incorporating causal<br>influence between variables with time delays. The study uses Granger causality to detect temporal lags and<br>adjust input variables accordingly. A method is proposed to enhance LSTM-model performance by<br>integrating lag analysis into the training pipeline. Experimental evaluation shows that accounting for<br>different lag times across variables significantly reduces forecasting error. The results confirm that causallag modeling improves robustness and reflects real-world dynamics in time series forecasting. The authors<br>emphasize the importance of considering lagged interrelationships to form a more informative input space<br>for the neural network. Experimental results indicate an improvement in forecasting accuracy when causally<br>significant relationships are identified in advance.<br><strong>Keywords</strong>: forecasting, time series, Granger causality, lag effect, prediction model, neural network</p> <p><strong>References</strong><br>1. Habibnia A., Etesami J., Kiyavash N. Modeling Systemic Risk: A Time-Varying<br>Nonparametric Causal Inference Framework. SSRN. 2024. URL:<br>https://doi.org/10.2139/ssrn.4684230.<br>2. Research on condition operation monitoring of power system based on supervisory control<br>and data acquisition model / B. Li et al. Alexandria Engineering Journal. 2024. Vol. 99. P. 326–334.<br>URL: https://doi.org/10.1016/j.aej.2024.05.027.<br>3. Open-Source Internet of Things-Based Supervisory Control and Data Acquisition System for<br>Photovoltaic Monitoring and Control Using HTTP and TCP/IP Protocols / W. Khalid et al. Energies.<br>2024. Vol. 17, no. 16. P. 4083. URL: https://doi.org/10.3390/en17164083.<br>4. Lopes F. M., Dutra E., Boussetta S. Evaluation of Daily Temperature Extremes in the<br>ECMWF Operational Weather Forecasts and ERA5 Reanalysis. Atmosphere. 2024. Vol. 15, no. 1.<br>P. 93. URL: https://doi.org/10.3390/atmos15010093.<br>5. Siddiqi A. Value Analytics for Earth Observing Systems. IGARSS 2024 - 2024 IEEE<br>International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024. 2024.<br>P. 3864–3867. URL: https://doi.org/10.1109/igarss53475.2024.10642411.<br>6. Liao S.-h., Widowati R., Lee C.-Y. Data mining analytics investigation on TikTok users'<br>behaviors: social media app development. Library Hi Tech. 2022. URL: https://doi.org/10.1108/lht08-2022-0368.<br>7. Chiang L. H., Braatz R. D. Process monitoring using causal map and multivariate statistics:<br>fault detection and identification. Chemometrics and Intelligent Laboratory Systems. 2003. Vol. 65,<br>no. 2. P. 159–178. URL: https://doi.org/10.1016/s0169-7439(02)00140-5.<br>8. Nadim K., Ragab A., Ouali M.-S. Data-driven dynamic causality analysis of industrial<br>systems using interpretable machine learning and process mining. Journal of Intelligent<br>Manufacturing. 2022. URL: https://doi.org/10.1007/s10845-021-01903-y.<br>9. Беспала О.М. Інструментарій причинно-наслідкового висновку: огляд та<br>перспективи. Control Systems and Computers. 2020. № 5 (289). С. 52–63.<br>URL: https://doi.org/10.15407/csc.2020.05.052.<br>10. Deep understanding in industrial processes by complementing human expertise with<br>interpretable patterns of machine learning / A. Ragab et al. Expert Systems with Applications. 2019.<br>Vol. 122. P. 388–405. URL: https://doi.org/10.1016/j.eswa.2019.01.011.<br>11. Беспала О. М., Отрох С. І.. Ружинський В. Г.. Моделювання спрямованого ациклічного<br>графа для причинного висновку. Наукові записки Державного університету телекомунікацій.<br>2023. № 2 (1) С. 87-95 DOI: 10.31673/2518-7678.2023.020202.<br>12. Беспала О. М. Метод пошуку та оцінки впливу причинно-наслідкових зв’язків в<br>системах прийняття рішень. Вісник НТУ "ХПІ". Серія: Інформатика та моделювання.<br>2020. № 2 (4). С. 59 – 72.<br>13. Granger C. W. J. Investigating Causal Relations by Econometric Models and Cross-spectral<br>Methods. Econometrica. 1969. Vol. 37, no. 3. P. 424. URL: https://doi.org/10.2307/1912791.</p>
Беспала О. М. (Bespala O.M.)
Тимкова А. В. (Tymkova A.V.)
##submission.copyrightStatement##
2025-06-21
2025-06-21
1
33
38
-
THE IMPACT OF PROFESSIONAL CERTIFICATION OF SOFTWARE TESTERS ON THE QUALITY OF INFORMATION SYSTEMS IN THE TELECOMMUNICATIONS SECTOR
https://journals.dut.edu.ua/index.php/sciencenotes/article/view/3206
<p>The article investigates the relationship between<br>the level of professional training of software testers and the quality of information systems in the<br>telecommunications sector. The structure and requirements of international certification programs, such as<br>ISTQB, are analyzed, with special attention to their impact on the efficiency of software testing processes.<br>A comparative study of companies that have implemented personnel certification has revealed a decrease<br>in the number of critical system failures and an increase in the reliability of telecommunications services.<br>The results obtained indicate that standardized approaches to qualifying testers have a positive impact on<br>system performance, minimize downtime, and increase overall user satisfaction. Practical<br>recommendations for improving the reliability of telecommunication platforms by integrating certification<br>systems into human resource management and quality assurance strategies are proposed. These<br>recommendations can be useful for decision makers seeking to optimize software quality through targeted<br>investments in training and professional development of testers.<br><strong>Keywords</strong>: tester certification, software quality, information systems, telecommunications, testing,<br>reliability, professional training</p> <p><strong>References</strong><br>1. International Software Testing Qualifications Board. International Software Testing<br>Qualifications Board. URL: https://www.istqb.org.<br>2. Pressman R. S., Maxim B. R. Software Engineering: A Practitioner’s Approach (9th Edition).<br>New York, McGraw-Hill, 2020. 940 p.<br>3. Kan S. H. Metrics and Models in Software Quality Engineering (2nd Edition). AddisonWesley Professional, 2002. 560 p.<br>4. IEEE. IEEE Standard for Software Quality Assurance Processes (IEEE Std 730–2014). IEEE<br>Computer Society, 2014. 54 с. URL: https://standards.ieee.org/ieee/730/5284<br>5. Garousi V., Felderer M., Mäntylä M. V. Guidelines for including grey literature and<br>conducting multivocal literature reviews in software engineering. Information and Software<br>Technology. 2019. Vol. 106. P. 101–121. URL: https://doi.org/10.1016/j.infsof.2018.09.006.<br>6. A survey on quality attributes in service-based systems / D. Ameller et al. Software Quality<br>Journal. 2015. Vol. 24, no. 2. P. 271–299. URL: https://doi.org/10.1007/s11219-015-9268-4.<br>7. Evans B., et al. An integrated satellite–terrestrial 5G network and its use to demonstrate 5G<br>use cases // International Journal of Satellite Communications and Networking. 2021. Vol. 39, no. 4.<br>P. 358–379. URL: https://doi.org/10.1002/sat.1393</p>
Юрчик Д. Ю. (Yurchyk D.Yu.)
##submission.copyrightStatement##
2025-06-21
2025-06-21
1
39
45
-
ADAPTIVE CHANNEL SWITCHING ALGORITHM FOR MULTI-CHANNEL WI-FI 7 DEVICES IN HETEROGENEOUS NETWORKS
https://journals.dut.edu.ua/index.php/sciencenotes/article/view/3207
<p>Wi-Fi 7 Standard, aimed at enhancing throughput and reducing latency, faces<br>compatibility challenges in heterogeneous networks where devices of different generations (Wi-Fi 4/5/6)<br>operate simultaneously. Existing channel-switching algorithms are limited to one-dimensional parameter<br>analysis, ignoring load dynamics, the impact of legacy devices, and the need for real-time adaptation. This<br>results in inefficient spectrum utilization, increased latency, and diminished benefits of Multi-Link<br>Operation (MLO) technology. The Adaptive Channel Switching Algorithm (ACSA) proposes an innovative<br>approach based on multi-criteria analysis of channel states: load, interference levels, and transmission<br>success rates. Unlike traditional methods, ACSA dynamically adapts to network changes, accounts for the<br>influence of legacy devices, and operates in a decentralized manner. This enables efficient traffic balancing,<br>minimizes collisions, and optimizes the use of Wi-Fi 7’s wideband channels.<br><strong>Keywords</strong>: Wi-Fi 7, MLO, channel change, ACSA, Q-Learning, DFS</p> <p><strong>References</strong><br>1. Cisco Annual Internet Report (2018–2023). Cisco.com. 09.03.2020. URL:<br>cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paperc11-741490.html.<br>2. Multiaccess Point Coordination for Next-Gen Wi-Fi Networks Aided by Deep<br>Reinforcement Learning / L. Zhang et al. IEEE Systems Journal. 2022. P. 1–12. URL:<br>https://doi.org/10.1109/jsyst.2022.3183199.<br>3. Channel Selection for Wi-Fi 7 Multi-Link Operation via Optimistic-Weighted VDN and<br>Parallel Transfer Reinforcement Learning / P. E. Iturria-Rivera et al. 2023 IEEE 34th Annual<br>International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC),<br>Toronto, ON, Canada, 5–8 September 2023. 2023. URL:<br>https://doi.org/10.1109/pimrc56721.2023.10293832.<br>4. Deep Reinforcement Learning for Dynamic Multichannel Access in Wireless Networks / S.<br>Wang et al. IEEE Transactions on Cognitive Communications and Networking. 2018. Vol. 4, no. 2.<br>P. 257–265. URL: https://doi.org/10.1109/tccn.2018.2809722.<br>5. Daniele Medda, Athanasios Iossifides, Periklis Chatzimisios, Fernando José Velez, JeanFrédéric Wagen. 2022 IEEE Conference on Standards for Communications and Networking (CSCN).<br>Investigating Inclusiveness and Backward Compatibility of IEEE 802.11be Multi-link Operation,<br>Thessaloniki, Greece. IEEE. URL: https://doi.org/10.1109/CSCN57023.2022.10050957.<br>6. Reinforcement Learning for Optimizing Wi-Fi Access Channel Selection / H. Nguyen et al.<br>Advances in Computational Collective Intelligence. Cham, 2021. P. 334–347. URL:<br>https://doi.org/10.1007/978-3-030-88113-9_27.</p>
Табор Д. І. (Tabor D.I.)
##submission.copyrightStatement##
2025-06-21
2025-06-21
1
46
51
-
KAPPA ARCHITECTURE OPTIMIZATION DURING BUILDING SCALABLE SYSTEMS
https://journals.dut.edu.ua/index.php/sciencenotes/article/view/3208
<p>. The article discusses the design and construction of<br>scalable systems using efficient Lambda and Kappa architectures. Lambda architecture has many<br>advantages, but the main disadvantage of this approach to designing scalable systems is its complexity due<br>to duplication of data processing logic. The main target of the research is to describe and develop an<br>alternative optimized model of the Kappa architecture, which consumes fewer resources but is excellent for<br>real-time event processing, which will provide an effective tool for building scalable systems and simplify<br>the choice. The result of the work is a comprehensive approach to building scalable systems, in which each<br>component of the system will be optimized through event flow analysis, which will allow for significant<br>improvements in real-time data processing systems.<br><strong>Keywords</strong>: Kappa architecture, Lambda architecture, BigData, scalable systems, model optimization</p> <p><strong>References</strong><br>1. Білоконь А. С., Борисов С. О., Усатенко М. В., Федорченко В. М. Аналіз функціонування<br>розподілених систем обробки та зберігання даних. Системи управління навігації та зв’язку,<br>Збірник наукових праць 2024, т. 3(77), С.84-88 URL: https://doi.org/: 10.26906/SUNZ.2024.3.08<br>2. Tanenbaum, Andrew S., and Maarten van Steen. Distributed Systems: Principles and<br>Paradigms. 3rd ed., Pearson, 2017.<br>3. Мокін, В.Б., Крижановський, Є.М., Лучко, А.М., Білецький, Б.С., Жуков, С.О. 2021.<br>Метод оптимізації інформаційних моделей масштабованих у просторі аналітичних веб-систем<br>за критерієм повноти їхньої топологічної спостережуваності. Вісник Вінницького<br>політехнічного інституту. 2021, 131–141. URL: https://doi.org/10.31649/1997-9266-2021-159-6-<br>131-141.<br>4. D. Y. Paramartha, A. L. Fitriyani, and S. Pramana. Development of Automated Environmental<br>Data Collection System and Environment Statistics Dashboard. Indonesian Journal of Statistics and<br>Its Applications, vol. 5, no. 2, pp. 314-325, 2021. URL: https://doi.org/10.29244/ijsa.v5i2p314-325.<br>5. Мокін В. Б., Овчаренко І. І., Лучко А. М., Давидюк О. М. Побудова масштабованої<br>інформаційно-пошукової системи для управління річковим басейном на основі реєстрів та<br>онтологічних моделей. Математичне моделювання в економіці, № 2 (15), 2019.<br>6. Рудніченко М.Д. Методичні вказівки до розрахунково-графічної роботи з дисципліни<br>«Моделі обробки структурованих и слабо структурованих масивів даних» для студентів спеціальності - 126 Інформаційні системи та технології / Укл.: М.Д. Рудніченко, Н.В. Бут. –<br>Одеса: ОНПУ, 2020. – 10 с. (Електронна версія), Реєстраційний номер №7534-РС-2020<br>(МВ11512)<br>7. Schuster, Werner. Nathan Marz on Storm, Immutability in the Lambda Architecture, Clojure.<br>www.infoq.com. Nathan Marz interview, 2014.<br>8. Kleppmann M. Designing Data-Intensive Applications: The Big Ideas Behind Reliable,<br>Scalable, and Maintainable Systems. O'Reilly Media, Incorporated, 2017. 616 p.</p>
Мельник Ю. В. (Melnyk Yu.V.)
Отрох С. І. (Otrokh S.I.)
Донець А. Г. (Donets A.G.)
Колумбет В. П. (Kolumbet V.P.)
Сарафанніков О. В. (Sarafannikov O.V.)
##submission.copyrightStatement##
2025-06-21
2025-06-21
1
52
56
-
APPLICATION OF ARTIFICIAL INTELLIGENCE FOR AUTOMATED ASSESSMENT OF SITUATIONAL TASKS IN CYBERSECURITY TRAINING
https://journals.dut.edu.ua/index.php/sciencenotes/article/view/3209
<p>The<br>article considers the problem of objective assessment of students' success in performing situational tasks in<br>higher education institutions, in particular in conditions of distance and blended learning. Analysis of<br>scientific publications indicates the influence of the contrast effect during assessment and the risks of<br>subjectivity inherent in traditional assessment methods. An automated assessment tool is proposed, based<br>on semantic comparison of students' answers with a reference answer, using natural language processing<br>(NLP) technologies and a mathematically based sentence transformer model. Based on standard Python<br>libraries, an improved model for automatic assessment of text situational tasks has been developed, which<br>performs a comprehensive analysis of the semantic and lexical coherence and completeness of students'<br>answers in comparison with the reference answer. Modeling and testing demonstrated a high Pearson<br>correlation coefficient (>0.95) between the scores generated by the model and expert assessments, which<br>confirms the accuracy and reliability of the results. A key advantage of the model is its ability to detect<br>internal plagiarism in student responses, thus supporting academic integrity. The model also significantly<br>reduces the time required for grading compared to traditional approaches and allows for visualization of<br>potential similarities.<br><strong>Keywords</strong>: information technology, artificial intelligence, situational learning, automatic assessment,<br>cybersecurity</p> <p><strong>References</strong><br>1. Increasing Teacher Competence in Cybersecurity Using the EU Security Frameworks / I.<br>Ievgeniia Kuzminykh et al. International Journal of Modern Education and Computer Science. 2021.<br>Vol. 13, no. 6. P. 60–68. URL: https://doi.org/10.5815/ijmecs.2021.06.06.<br>2. Brandão A., Pedro L., Zagalo N. Teacher professional development for a future with<br>generative artificial intelligence – an integrative literature review. Digital Education Review. 2024.<br>No. 45. P. 151–157. URL: https://doi.org/10.1344/der.2024.45.151-157.<br>3. Gallego-Arrufat M.-J., Torres-Hernández N., Pessoa T. Competence of future teachers in the<br>digital security area. Comunicar. 2019. Vol. 27, no. 61. P. 57–67. URL: https://doi.org/10.3916/c61-<br>2019-05.<br>4. P.A.L. Nadeesha, T.A. Weerasinghe, W.R.N.S Abeyweera. Automatic scoring of knowledge<br>gained and shared through discussion forums: based on the community of inquiry model. Information<br>Technologies and Learning Tools. 2025. Vol. 105, no. 1. P. 85–102. URL:<br>https://doi.org/10.33407/itlt.v105i1.5912.<br>5. Application of artificial intelligence for improving situational training of cybersecurity<br>specialists / Y. V. Shchavinsky et al. Information Technologies and Learning Tools. 2023. Vol. 97,<br>no. 5. P. 215–226. URL: https://doi.org/10.33407/itlt.v97i5.5424.<br>6. Bi X., Shi X., Zhang Z. Cognitive machine learning model for network information safety.<br>Safety Science. 2019. Vol. 118. P. 435–441. URL: https://doi.org/10.1016/j.ssci.2019.05.032.<br>7. The Current Research Status of AI-Based Network Security Situational Awareness / M. Wang<br>et al. Electronics. 2023. Vol. 12, no. 10. P. 2309. URL: https://doi.org/10.3390/electronics12102309.<br>8. AI-Empowered Multimodal Hierarchical Graph-Based Learning for Situation Awareness on<br>Enhancing Disaster Responses / J. Chen et al. Future Internet. 2024. Vol. 16, no. 5. P. 161. URL:<br>https://doi.org/10.3390/fi16050161.<br>9. Burrows S., Gurevych I., Stein B. The Eras and Trends of Automatic Short Answer Grading.<br>International Journal of Artificial Intelligence in Education. 2014. Vol. 25, no. 1. P. 60–117. URL:<br>https://doi.org/10.1007/s40593-014-0026-8.<br>10. Progress in Neural NLP: Modeling, Learning, and Reasoning / M. Zhou et al. Engineering.<br>2020. Vol. 6, no. 3. P. 275–290. URL: https://doi.org/10.1016/j.eng.2019.12.014.<br>11. Reimers N., Gurevych I. Sentence-BERT: Sentence Embeddings using Siamese BERTNetworks. Proceedings of the 2019 Conference on Empirical Methods in Natural Language<br>Processing and the 9th International Joint Conference on Natural Language Processing (EMNLPIJCNLP), Hong Kong, China. Stroudsburg, PA, USA, 2019. URL: https://doi.org/10.18653/v1/d19-<br>1410.</p>
Легомінова С. В. (Lehominova S.V.)
Щавінський Ю. В. (Shchavinsky Yu.V.)
Бударецький Ю. І. (Budaretsky Yu.I.)
Будзиньский О. В. (Budzynskyi O.V.)
##submission.copyrightStatement##
2025-06-21
2025-06-21
1
57
67
-
SIMULTANEOUS LOCALIZATION AND MAPPING METHOD OF DYNAMIC ENVIRONMENT FOR UNMANNED SYSTEMS
https://journals.dut.edu.ua/index.php/sciencenotes/article/view/3210
<p>This paper is devoted to the study of simultaneous localization and mapping (SLAM)<br>methods for unmanned systems operating in complex and dynamic environments. The paper considers the<br>challenges associated with the need to adapt to environmental changes. The use of the Kalman filter and its<br>extended versions is proposed, in particular with optimization using nonlinear programming methods. The<br>obtained scientific results include the optimization of the Kalman filter taking into account nonlinearities<br>using nonlinear programming methods, as well as the integration of classical computer vision algorithms<br>(ORB) with convolutional neural networks. To achieve these results, the tasks of analyzing existing SLAM<br>methods, developing new adaptive localization algorithms, and their experimental verification on existing<br>datasets were solved. The results obtained can be recommended for use in projects on autonomous<br>navigation of unmanned ground and air platforms, especially in conditions of limited environmental<br>predictability, such as rescue operations, military missions, automated manufacturing and transportation<br>systems.<br><strong>Keywords</strong>: SLAM, Kalman filter, dynamic environment, localization, unmanned systems,<br>convolutional neural networks</p> <p><strong>References</strong><br>1. Bailey T., Durrant-Whyte H. Simultaneous localization and mapping (SLAM): part II. IEEE<br>Robotics & Automation Magazine. 2006. Vol. 13, no. 3. P. 108–117. URL:<br>https://doi.org/10.1109/mra.2006.1678144.<br>2. Yarovoi A., Cho Y. K. Review of simultaneous localization and mapping (SLAM) for<br>construction robotics applications. Automation in Construction. 2024. Vol. 162. P. 105344. URL:<br>https://doi.org/10.1016/j.autcon.2024.105344.<br>3. VDO-SLAM: A Visual Dynamic Object-aware SLAM System / J. Zhang et al. URL:<br>https://arxiv.org/abs/2005.11052.<br>4. Visual SLAM in dynamic environments based on object detection / Y.-b. Ai et al. Defence<br>Technology. 2020. URL: https://doi.org/10.1016/j.dt.2020.09.012.<br>5. Liu Y., Miura J. RDS-SLAM: Real-Time Dynamic SLAM Using Semantic Segmentation<br>Methods. IEEE Access. 2021. Vol. 9. P. 23772–23785. URL:<br>https://doi.org/10.1109/access.2021.3050617.<br>6. Wadud, R. A., & Sun, W. (2022). DyOb-SLAM: Dynamic Object Tracking SLAM System.<br>arXiv. URL: https://doi.org/10.48550/arXiv.2211.01941.<br>7. Kim, A., Osep, A., & Leal-Taixe, L. (2021). EagerMOT: 3D Multi-Object Tracking via<br>Sensor Fusion.<br>8. Mur-Artal R., Montiel J. M. M., Tardos J. D. ORB-SLAM: A Versatile and Accurate<br>Monocular SLAM System. IEEE Transactions on Robotics. 2015. Vol. 31, no. 5. P. 1147–1163. URL:<br>https://doi.org/10.1109/tro.2015.2463671.<br>9. Applying SLAM Algorithm Based on Nonlinear Optimized Monocular Vision and IMU in<br>the Positioning Method of Power Inspection Robot in Complex Environment / C. Wang et al.<br>Mathematical Problems in Engineering. 2022. Vol. 2022. P. 1–14. URL:<br>https://doi.org/10.1155/2022/3378163.<br>10. Choi K.-S., Lee S.-G. Enhanced SLAM for a mobile robot using extended Kalman Filter<br>and neural networks. International Journal of Precision Engineering and Manufacturing. 2010. Vol.<br>11, no. 2. P. 255–264. URL: https://doi.org/10.1007/s12541-010-0029-9.<br>11. Liu H. Identifying and updating local optimization methods in extended Kalman filter<br>SLAM. Applied and Computational Engineering. 2023. Vol. 4, no. 1. P. 569–573. URL:<br>https://doi.org/10.54254/2755-2721/4/2023325.</p>
Мороз М. В. (Moroz M.V.)
##submission.copyrightStatement##
2025-06-21
2025-06-21
1
68
73
-
FLASH CALLS IN MODERN TELECOMMUNICATION NETWORKS: THREATS, CHALLENGES, AND EFFECTIVE COUNTERMEASURES
https://journals.dut.edu.ua/index.php/sciencenotes/article/view/3211
<p>This paper addresses the phenomenon of Flash Calls — ultra-short incoming<br>calls used for user authentication in modern telecommunication networks — and their impact on network<br>security and operator revenues. Unlike traditional SMS-based methods, Flash Calls allow cost-effective,<br>high-speed verification, but simultaneously bypass billing systems and facilitate fraudulent practices such<br>as CLI spoofing and international revenue sharing fraud (IRSF). The paper explores the technical<br>characteristics of Flash Calls, highlights their detection complexity, and analyses vulnerabilities in current<br>anti-fraud systems. A multi-layered countermeasure architecture is proposed, integrating real-time<br>analytics, machine learning algorithms, and STIR/SHAKEN protocols to identify and block fraudulent<br>activity. The effectiveness of the approach is supported by traffic analysis and experimental blocking results<br>on global platforms such as Meta. The proposed system ensures reliable identification of malicious patterns<br>while minimizing false positives and preserving service quality.<br><strong>Keywords</strong>: Flash Calls, CLI spoofing, fraud detection, Voice firewall, Wangiri, machine learning,<br>STIR/SHAKEN, telecom security, IMS network</p> <p><strong>References</strong><br>1. Hitchins D. What are flash calls and how do they work? Infobip. URL:<br>https://www.infobip.com/blog/what-is-a-flash-call.<br>2. Taylor L. CFCA 2021 Global Fraud Loss Survey. New York, NY, USA : CSFA, 2021. 67 p,<br>URL: https://cfca.org/document/2021-fraud-loss-survey/.<br>3. GSMA. Flash Call Traffic Analysis Report 2024. GSMA Intelligence.<br>4. Sinapsio. Wangiri Fraud and Flash Calls | Betatel LTD. Blog. URL:<br>https://api.betatel.com/blog/wangiri-fraud-and-flash-calls.<br>5. Vetoshko I.P., Kravchuk S.O. Opportunities to Improve the Quality of Voice Services in 5G<br>Networks // 2023 IEEE International Conference on Information and Telecommunication<br>Technologies and Radio Electronics (UkrMiCo), ISBN: 979-8-3503-4848-4, 13-18 November 2023,<br>Kyiv, Ukraine. https://doi.org/10.1109/UkrMiCo61577.2023.10380376.<br>6. 3GPP TS 23.501 version 16.7.0 Release 16. 5G; System architecture for the 5G System (5GS).<br>Effective from 2021-01-21. Official edition. FRANCE : 650 Route des Lucioles F-06921 Sophia<br>Antipolis Cedex, 2021. 451 p.<br>7. Vetoshko I.P., Kravchuk S.O. Possibilities of improving the voice services quality in 5G<br>networks // Information and Telecommunication Sciences. – 2023. – Vol.14, No 2. – P. 9-16,<br>https://doi.org/10.20535/2411-2976.22023.9-16<br>8. Flash calls. Mobileum. URL: http://www.mobileum.com/products/riskmanagement/business-assurance/flash-calls.<br>9. ATIS-1000080.v004. Signature-based Handling of Asserted information using toKENs<br>(SHAKEN): Governance Model and Certificate Management. Effective from 2021-10-05. Official<br>edition. New York, NY: ATIS Packet Technologies and Systems Committee (PTSC), 2021. 29 p.<br>10. Voice Firewall. Mobileum. Comprehensive Voice Traffic Policy Management and<br>Analytics System. URL: https://www.mobileum.com/products/roaming-and-core-network/networkservices/voice-firewall/.<br>11. 3GPP TS 31.102 version 17.14.1 Release 17. Universal Mobile Telecommunications<br>System (UMTS); LTE; 5G; Characteristics of the Universal Subscriber Identity Module (USIM) application. Effective from 2024-10-08. Official edition. FRANCE : 650 Route des Lucioles F-06921<br>Sophia Antipolis Cedex, 2024. 371 p.<br>12. Ветошко І.П. Кравчук С.О. Розгортання голосових сервісів у мережах 5G // Grail of<br>Science. – 2023. - № 24. – с. 278–281, https://doi.org/10.36074/grail-of-science.17.02.2023.051.<br>13. 3GPP TR 33.835 V16.1.0. Study on authentication and key management for applications<br>based on 3GPP credential in 5G. Effective from 2020-07-09. Official edition. FRANCE : 650 Route<br>des Lucioles F-06921 Sophia Antipolis Cedex, 2020. 83 p.<br>14. Dahlman E., Parkvall S., Sköld J. 5G Standardization. 5G NR: the Next Generation<br>Wireless Access Technology. 2018. 442p. URL: https://doi.org/10.1016/b978-0-12-814323-0.00002-<br>8.<br>15. Team G. Why Do You Need a Voice Firewall? GMS | AI-driven communications<br>solutions | GMS. URL: https://gms.net/blog/why-do-you-need-a-voice-firewall.</p>
Ветошко І. П. (Vetoshko I.P.)
##submission.copyrightStatement##
2025-06-21
2025-06-21
1
74
89
-
METHODOLOGY FOR FORMING INTEGRAL INDICATORS OF NETWORK CONNECTION QUALITY IN PACKET-SWITCHED NETWORKS
https://journals.dut.edu.ua/index.php/sciencenotes/article/view/3212
<p>The article addresses quality assurance in packetswitched telecommunication systems. Growing network traffic and higher QoS demands challenge<br>operators with the complexity of comprehensively evaluating network connections across multiple<br>parameters (delay, packet loss, error rate, jitter).<br>The research analyzes existing telecommunications studies and ITU-T recommendations Y.1540,<br>Y.1564, and Y.1731, which define IP network quality indicators. Current evaluation methods, while<br>effective, often lack assessment integrity, necessitating integral quality indicators.<br>The study aims to create integral indicator models accounting for synergistic relationships between<br>network performance parameters. It develops indicators including throughput ratio (TR), priority queue<br>quality factor (PQF), non-priority queue quality factor (NQF), and network connection quality factor<br>(NCQF). Additionally, it proposes a "fault tree analysis" model to analyze performance deterioration<br>causes.<br>These findings have practical applications in real-time monitoring, fault diagnosis, architecture<br>optimization, and user need adaptation. The methodology offers flexibility and versatility for different<br>network types and services, improving assessment accuracy and operational efficiency. This creates a<br>foundation for more reliable, adaptive telecommunication systems meeting modern requirements.<br><strong>Keywords</strong>: telecommunication networks, quality of network connections, integral indicators, network<br>performance, delay, jitter, error rate, QoS, interconnection model, throughput, network monitoring, network<br>optimisation, packet switching</p> <p><strong>References</strong><br>1. Recommendation ITU-T Y.1540 (12/2019). Internet protocol data communication service –<br>IP packet transfer and availability performance parameters. URL: https://www.itu.int/rec/T-RECY.1540-201912-I/en.<br>2. Recommendation ITU-T Y.1564 (02/2016). Ethernet service activation test methodology.<br>URL: https://www.itu.int/rec/T-REC-Y.1564-201602-I/en.<br>3. High performance TCP/IP networking: concepts, issues, and solutions / H. Mahbub, J. Raj.<br>Pearson Education, Limited, 2003. 408 p.<br>4. Stallings W. Data and computer communications, international edition. Pearson Education,<br>Limited, 2015. 915 p.<br>5. Recommendation ITU-T Y.1731 (06/2023). Operation, administration and maintenance<br>(OAM) functions and mechanisms for Ethernet-based networks. URL: https://www.itu.int/rec/TREC-G.8013-202306-I/en.<br>6. Held G. Quality of service in a Cisco networking environment. Chichester : Wiley, 2002. 184<br>p.<br>7. IETF RFC 2544 (03/1999). Benchmarking Methodology for Network Interconnect Devices.<br>Internet Engineering Task Force. URL: https://www.ietf.org/rfc/rfc2544.txt.<br>8. Tanenbaum A. S. Computer networks, 5th edition. PEARSON INDIA, 2013.<br>9. Ramasamy K., Medhi D. Network routing: algorithms, protocols, and architectures. Elsevier<br>Science & Technology Books, 2017. 1018 p.<br>10. IETF RFC 5357 (12/2008). A Two-Way Active Measurement Protocol (TWAMP). URL:<br>https://datatracker.ietf.org/doc/html/rfc5357.</p>
Брезіцький С. М. (Brezitskyi S.M.)
Герасимчук В. С. (Herasymchuk V.S.)
##submission.copyrightStatement##
2025-06-21
2025-06-21
1
90
96
-
RESEARCH INTO THE PROBLEMS OF FUNCTIONING OF INTELLIGENT NETWORKS USING THE INTERNET OF THINGS
https://journals.dut.edu.ua/index.php/sciencenotes/article/view/3213
<p>The article is devoted to the<br>consideration of the Internet of Things technology, where it is necessary to first of all evaluate the basic<br>principles, key tasks, as well as the most modern approaches and solutions.<br>The article proves that the Internet of Things is associated with a physical action or event. It forms a<br>response to a real-world factor. At the same time, a single sensor can generate a huge amount of data, for<br>example, an acoustic sensor for preventive equipment inspection. In other cases, a single bit of data is<br>enough to convey important information about the state of the system. Sensor systems have evolved and,<br>in accordance with Moore's law, have shrunk to sub-nanometer sizes and become significantly cheaper.<br>This is what predicts that many devices will be connected to the Internet of Things, and this is why these<br>predictions will come true.<br>Therefore, when considering the Internet of Things, it is necessary to consider microelectromechanical<br>systems, sensors and other types of low-cost edge devices and their electrophysical properties. This also<br>applies to the power systems needed to power the edge devices.<br><strong>Keywords</strong>: sensors, differentiated privacy, Internet of Things, information system, privacy protection</p> <p><strong>References</strong><br>1. В. Б. Толубко, Л. Н. Беркман, Л. П. Крючкова, А. Ю. Ткачов. Підвищення показників<br>якості системи управління послугами мережами майбутнього / В // Наукові записки<br>Українського науково-дослідного інституту зв'язку. - 2018. - № 3. - С. 5-11.<br>2. Ambient Backscatter Communications: A Contemporary Survey / N. Van Huynh et al. IEEE<br>Communications Surveys & Tutorials. 2018. Vol. 20, no. 4. P. 2889–2922. URL:<br>https://doi.org/10.1109/comst.2018.2841964.<br>3. Mao Q., Hu F., Hao Q. Deep Learning for Intelligent Wireless Networks: A Comprehensive<br>Survey. IEEE Communications Surveys & Tutorials. 2018. Vol. 20, no. 4. P. 2595–2621. URL:<br>https://doi.org/10.1109/comst.2018.2846401.<br>4. G. Vougioukas and A. Bletsas, “Switching frequency techniques for universal ambient<br>backscatter networking,” IEEE J. Select. Areas Commun., vol. 37, no. 2, pp. 464-477, Feb. 2019.<br>5. Zhang C., Patras P., Haddadi H. Deep Learning in Mobile and Wireless Networking: A<br>Survey. IEEE Communications Surveys & Tutorials. 2019. Vol. 21, no. 3. P. 2224–2287. URL:<br>https://doi.org/10.1109/comst.2019.2904897.<br>6. Modulation in the Air: Backscatter Communication Over Ambient OFDM Carrier / G. Yang<br>et al. IEEE Transactions on Communications. 2018. Vol. 66, no. 3. P. 1219–1233. URL:<br>https://doi.org/10.1109/tcomm.2017.2772261.<br>7. Yang G., Zhang Q., Liang Y.-C. Cooperative Ambient Backscatter Communications for<br>Green Internet-of-Things. IEEE Internet of Things Journal. 2018. Vol. 5, no. 2. P. 1116–1130. URL:<br>https://doi.org/10.1109/jiot.2018.2799848.<br>8. Hua S., Wang Q., Xu X. Application of machine learning in wireless communication.<br>Theoretical and Natural Science. 2023. Vol. 12, no. 1. P. 130–135. URL:<br>https://doi.org/10.54254/2753-8818/12/20230452.<br>9. X. Zhou, M. Sun, G. Y. Li, and B.-H. F. Juang, “Intelligent wireless communications enabled<br>by cognitive radio and machine learning,” China Commun., vol. 15, no. 12, pp. 16-48, Dec. 2018.</p>
Галаган Н. В. (Halahan N.V.)
Гладка М. В. (Gladka M.V.)
Борисенко І. І. (Borysenko I.I.)
Блаженний Н. В. (Blazhennyi N.V.)
##submission.copyrightStatement##
2025-06-21
2025-06-21
1
97
105
-
REVIEW OF THE RESEARCH ON NOTE RECOGNITION FROM AUDIO DATA USING NEURAL NETWORKS
https://journals.dut.edu.ua/index.php/sciencenotes/article/view/3214
<p>This article explores modern neural network approaches to automatic music note recognition<br>from audio recordings. The study examines various methods, including Fast Fourier Transform (FFT),<br>Convolutional Neural Networks (CNN), and Residual Shuffle-Exchange Networks (RSE). Each approach<br>is analyzed in terms of accuracy, adaptability, and performance in real-time scenarios. The paper highlights<br>the strengths of deep learning techniques in handling challenges such as background noise, polyphonic<br>textures, and variability in note articulation across different instruments. Experimental results show that<br>CNNs and RSE-based models significantly outperform traditional signal processing methods, achieving<br>precision rates exceeding 80%. Special attention is given to data preprocessing, feature extraction, and the<br>design of deep architectures suited for musical tasks. The research also emphasizes the importance of<br>diverse datasets, including both real and synthetic recordings, for improving generalization. The findings<br>indicate the strong potential of neural networks in applications such as music transcription, live<br>performance analysis, and music education, offering real-time and highly accurate note recognition<br>systems.<br><strong>Keywords</strong>: Note recognition, audio analysis, neural networks, convolutional neural network, RSE<br>network, music transcription, deep learning, sound processing, machine learning, artificial intelligence</p> <p><strong>References</strong><br>1. A tutorial on onset detection in music signals / J. P. Bello et al. IEEE transactions on speech<br>and audio processing. 2005. Vol. 13, no. 5. P. 1035–1047. URL:<br>https://doi.org/10.1109/tsa.2005.851998.<br>2. Duan Z., Zhang D. Note recognition of various instruments played in noisy environment by<br>deep convolutional neural networks. Applied acoustics. 2018. Vol. 141. P. 154–164.<br>3. Pons J., Serra X., Gómez E. End-to-end learning for music audio tagging at scale. Proceedings<br>of the 17th international society for music information retrieval conference. 2016. P. 315–321.<br>4. Slepkov A. D., Steedman M. A convolutional neural network approach to real-time pitch<br>detection. Journal of the Acoustical Society of America. 2017. Vol. 141, no. 5. P. EL462–EL468.<br>5. Uhle C., Schedl M., Pohle T. Deep learning for musical instrument recognition in audio<br>recordings. Journal of the Audio Engineering Society. 2018. Vol. 66, no. 9. P. 680–693.<br>6. Lidy T., Rauber A. Evaluation of convolutional neural networks for music classification tasks.<br>Journal of new music research. 2015. Vol. 44, no. 2. P. 101–114.<br>7. Yang Y., Lee H. Pitch tracking of guitar notes using deep convolutional neural networks.<br>Proceedings of the International Conference on New Interfaces for Musical Expression. 2018. P.<br>229–234.<br>8. Azarloo A., Farokhi F. Automatic musical instrument recognition using K-NN and MLP<br>neural networks. 2012 4th international conference on computational intelligence, communication<br>systems and networks (cicsyn 2012), Phuket, Thailand, 24–26 July 2012. 2012. URL:<br>https://doi.org/10.1109/cicsyn.2012.61.<br>9. Thickstun J., Harchaoui Z., Kakade S. M. Learning features of music from scratch. ICLR<br>(Poster). 2017.<br>10. Freivalds K., Ozolins E., Sostaks A. Neural Shuffle-Exchange Networks – Sequence<br>Processing in O(n log n) Time. Advances in Neural Information Processing Systems. 2019. Vol. 32.<br>P. 6626–6637.<br>11. Residual shuffle-exchange networks for fast processing of long sequences / A. Draguns et al.<br>Proceedings of the AAAI conference on artificial intelligence. 2021. Vol. 35, no. 8. P. 7245–7253.<br>URL: https://doi.org/10.1609/aaai.v35i8.16890.<br>12. Fujinaga I., MacMillan K. Realtime Recognition of Orchestral Instruments. Proceedings of<br>the International Computer Music Conference (ICMC). 2000. P. 141–143.</p>
Бай Я. В. (Bai Y.V.)
Катков Ю. І. (Katkov Yu.I.)
##submission.copyrightStatement##
2025-06-21
2025-06-21
1
106
115
-
DEEP LEARNING IN SPEECH SYNTHESIS SYSTEMS
https://journals.dut.edu.ua/index.php/sciencenotes/article/view/3265
<p>Deep learning systems<br>allow you to automate complex tasks that previously required human intelligence, and do so with high<br>accuracy. Deep learning uses artificial neural networks with many layers – each layer processes information<br>in an increasingly complex and abstract way. This allows the system to learn high-level features such as<br>emotions, intonations, expressiveness, etc. The introduction of these features makes synthesized speech<br>more natural, which contributes to its better perception by humans. Unlike traditional speech synthesis<br>methods, such as formant synthesis, concatenative synthesis or HMM-based approaches (Hidden Markov<br>Models), deep learning provides much higher flexibility and sound quality. In traditional systems, speech<br>was built from pre-recorded fragments or generated according to predefined rules, which limited the<br>naturalness, intonation richness and emotional coloring of the voice. Thus, deep learning overcomes key<br>limitations of traditional approaches and opens up new opportunities in the field of voice technologies –<br>from text-to-speech to full-fledged emotional communication between humans and machines. The article<br>considers the main areas of application of deep learning for speech synthesis, analyzes existing approaches<br>to building synthesis systems, and analyzes their weaknesses and strengths.<br><strong>Keywords</strong>: deep learning, neural network, synthesized speech</p> <p><strong>References</strong><br>1. Self-Supervised Speech Representation Learning: A Review / A. Mohamed et al. IEEE<br>Journal of Selected Topics in Signal Processing. 2022. P. 1–34.<br>URL: https://doi.org/10.1109/jstsp.2022.3207050.<br>2. HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden<br>Units / W.-N. Hsu et al. IEEE/ACM Transactions on Audio, Speech, and Language Processing. 2021.<br>Vol. 29. P. 3451–3460. URL: https://doi.org/10.1109/taslp.2021.3122291<br>3. Hastad J., Risse K. On Bounded Depth Proofs for Tseitin Formulas on the Grid;<br>Revisited. 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS),<br>Denver, CO, USA, 31 October – 3 November 2022. 2022.<br>URL: https://doi.org/10.1109/focs54457.2022.00110<br>4. Conformer: Convolution-augmented Transformer for Speech Recognition / A. Gulati et<br>al. Interspeech 2020. ISCA, 2020. URL: https://doi.org/10.21437/interspeech.2020-3015.<br>5. Natural TTS Synthesis by Conditioning Wavenet on MEL Spectrogram Predictions / J. Shen<br>et al. ICASSP 2018 - 2018 IEEE International Conference on Acoustics, Speech and Signal<br>Processing (ICASSP), Calgary, AB, 15–20 April 2018. 2018.<br>URL: https://doi.org/10.1109/icassp.2018.8461368.<br>6. DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations / J. Giorgi<br>et al. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and<br>the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),<br>Online. Stroudsburg, PA, USA, 2021. URL: https://doi.org/10.18653/v1/2021.acl-long.72.<br>7. Simultaneous modeling of spectrum, pitch and duration in HMM-based speech synthesis /<br>T. Yoshimura et al. 6th European Conference on Speech Communication and Technology<br>(Eurospeech 1999). ISCA, 1999. URL: https://doi.org/10.21437/eurospeech.1999-513.<br>8. Xu S.H. Study on HMM-Based Chinese Speech Synthesis. Beijing : Beijing University of<br>Posts and Telecommunications, 2007.<br>9. Sotelo J., Mehri S., Kumar K., Santos J.F., Kastner K., Courville A., Bengio Y. Char2wav:<br>End-to-end Speech Synthesis // Proceedings of the International Conference on Learning<br>Representations Workshop, Toulon, France, 24–26 April 2017.<br>10. Klatt D. H. Software for a cascade/parallel formant synthesizer. The Journal of the Acoustical<br>Society of America. 1980. Vol. 67, no. 3. P. 971–995. URL: https://doi.org/10.1121/1.383940.<br>11. Moulines E., Charpentier F. Pitch-synchronous waveform processing techniques for text-tospeech synthesis using diphones. Speech Communication. 1990. Vol. 9, no. 5-6. P. 453–467.<br>URL: https://doi.org/10.1016/0167-6393(90)90021-z.<br>12. Ze H., Senior A., Schuster M. Statistical parametric speech synthesis using deep neural<br>networks. ICASSP 2013 - 2013 IEEE International Conference on Acoustics, Speech and Signal<br>Processing (ICASSP), Vancouver, BC, Canada, 26–31 May 2013. 2013.<br>URL: https://doi.org/10.1109/icassp.2013.6639215.<br>13. Morise M., Yokomori F., Ozawa K. WORLD: A Vocoder-Based High-Quality Speech<br>Synthesis System for Real-Time Applications. IEICE Transactions on Information and Systems.<br>2016. E99.D, no. 7. P. 1877–1884. URL: https://doi.org/10.1587/transinf.2015edp7457.<br>14. Luong T., Pham H., Manning C. D. Effective Approaches to Attention-based Neural<br>Machine Translation. Proceedings of the 2015 Conference on Empirical Methods in Natural<br>Language Processing, Lisbon, Portugal. Stroudsburg, PA, USA, 2015.<br>URL: https://doi.org/10.18653/v1/d15-1166.</p>
Іщеряков С. М. (Ishcheriakov S.M.)
Попов А. О. (Popov A.O.)
##submission.copyrightStatement##
2025-07-26
2025-07-26
1
116
123
-
METHODOLOGY FOR ENSURING ADAPTATION AND SELF-ORGANIZATION OF A SENSOR NETWORK UNDER CONDITIONS OF INTERFERENCE AND CYBER INFLUENCE
https://journals.dut.edu.ua/index.php/sciencenotes/article/view/3266
<p>The article examines the functioning process of a sensor network (SN) in which an adaptation<br>and self-organization methodology is applied under conditions of interference and cyber influence. This<br>methodology is based on the use of test diagnostics of the SN, self-organization, and restoration of stable<br>operation.<br>Sensor networks consist of a large number of multifunctional devices that serve as highly efficient<br>solutions in information collection systems. Ensuring information security in SNs is quite challenging, as<br>it requires key exchange and session maintenance, which affects the number of transactions between<br>network nodes. The reliability of transmitted information is achieved by receiving confirmation after data<br>transmission from properly functioning network sensors. The minimal size of the devices makes sensor<br>technology highly flexible and practical.<br><strong>Keywords</strong>: test diagnostics, network self-organization, interference environment, cyber influence,<br>sensor network, sensor</p> <p><strong>References</strong><br>1. Зеленін А.М., Власова В.А. Фаза ініціалізації в безпроводових сенсорних мережах //<br>Вісник Національного технічного університету “ХПІ”: зб. наук. праць. Тематичний випуск:<br>Нові рішення в сучасних технологіях. 2012. № 26. С. 55–61.<br>2. Bein D. Self-Organizing and Self-Healing Schemes in Wireless Sensor Networks. London,<br>England: Springer London, 2009. P. 293–304. URL: https://doi.org/10.1007/978–1–84882–218–<br>4_11.<br>3. Петрушко М. М. Аналіз особливостей позиціонування мобільних об’єктів бездротових<br>сенсорних мереж: пояснювальна записка до атестаційної роботи здобувача вищої освіти на<br>другому (магістерському) рівні, спеціальність 172 Телекомунікації та радіотехніка<br>/М. М. Петрушко; М-во освіти і науки України, Харків. нац. ун-т радіоелектроніки. – Харків,<br>2019. – 65 с. URL: http://openarchive.nure.ua/handle/document/11169.<br>4. Міночкін А.І., Романюк В.А., Жук О.В. Перспективи розвитку тактичних сенсорних<br>мереж. // Збірник наукових праць ВІТІ НТУУ “КПІ”– 2007. – № 4. С. 16 – 22.<br>5. Жук О. В., Романюк В. А., Сова О. Я. Методологічні основи управління<br>перспективними неоднорідними безпроводовими сенсорними мережами тактичної ланки<br>управління військами. Пріоритетні напрямки розвитку телекомунікаційних систем та мережа<br>спеціального призначення // К.: ВІТІ НТУУ «КПІ» 2016. С. 34 – 44.<br>6. Машталір В.В., Жук О.В., Міненко Л.М., Артюх С.Г. Концептуальні підходи<br>застосування бездротових сенсорних мереж арміями передових країн світу. Сучасні<br>інформаційні технології у сфері безпеки та оборони. 2023. Т. 47, № 2. С. 96– 112.<br>7. Лепіх Я.І., Гордієнко Ю.О, Дзядевич С.В., Дружинін А.О., Євтух А.А., Лєнков С.В.,<br>Мельник В.Г., Проценко В.О., Романов В.О. Інтелектуальні вимірювальні системи на основі<br>мікроелектронних датчиків нового покоління: монографія. Одеса: «Астропринт», 2011. 352 с.<br>8. Лепіх Я.І., Гордієнко Ю.О, Дзядевич С.В., Дружинін А.О., Євтух А.А.,. Лєнков С.В.,<br>Мельник В.Г., Проценко В.О., Романов В.О. Мікроелектронні датчики нового покоління для<br>інтелектуальних систем. монографія. Одеса: «Астропринт», 2011. 92 с.<br>9. Лєнков С.В., Лепіх Я.І., Мокрицький В.А., Сєлюков О.В., Сминтина В.А. за заг. ред.<br>Мокрицького В.А., Лєнкова С.В. Напівпровідникові оптичні та акустоелектронні сенсори і<br>системи. монографія. Одеса: «Астропринт», 2009. 256 с.<br>10. System-on-Chip (SoC) Solution for ZigBee/IEEE 802.15.4 Wireless Sensor Network. URL:<br>http://focus.ti.com/docs/prod/ folders/print/cc2431.html. URL: https://oxorona.com/ieee-802-15-4/.<br>11. Протокол стандарту IEEE 802.15.4. URL: https://oxorona.com/ieee-802-15-4/.<br>12. М.Ю. Зеляновський, О.В.Тимченко. Інтелектуальна система для бездротових<br>спеціалізованих сенсорних та мереж персонального радіусу дії: програмно-апаратна<br>платформа вузла бездротової мережі // Моделювання та інформаційні технології. Зб. наук. пр.<br>ІПМЕ НАН України. - Вип.49. - К.: 2008. - С. 185-193.</p>
Охрамович М. М. (Okhramovych M.M.)
Коваль М. О. (Koval M.O.)
Кравченко О. І. (Kravchenko O.I.)
Шамрай Н. М. (Shamrai N.M.)
##submission.copyrightStatement##
2025-07-26
2025-07-26
1
124
130
-
METHODS OF IMPLEMENTING RETRIEVAL-AUGMENTED GENERATION IN COMBINATION WITH MODERN LARGE LANGUAGE MODELS
https://journals.dut.edu.ua/index.php/sciencenotes/article/view/3267
<p>The article presents a comprehensive study of stateof-the-art Retrieval-Augmented Generation (RAG) methods integrated with large language models such as<br>GPT-4 and open GPT-4-equivalent models (GPT-4o). We analyze experimental results from 2023-2025<br>(including open sources like Arxiv, HuggingFace, PapersWithCode) that demonstrate the advantages of<br>new approaches: RAG 2.0 with joint end-to-end training of components, adaptive dynamic retrieval,<br>generative prompts for retrievers, self-refining pipelines with feedback, and modular architectures for APIbased models. We explain how these innovations overcome the shortcomings of traditional RAG by<br>reducing hallucination rates and improving answer faithfulness. The mechanisms of the models are<br>described, along with system workflow diagrams and a comparative table of metrics (Hallucination Rate,<br>Answer Faithfulness, Retrieval Precision). We substantiate the potential of advanced RAG in information<br>systems, chatbots, and analytics platforms. A clear vision for further development is formulated –<br>integrating RAG with continuously updated knowledge bases and real-time search APIs to ensure up-todate responses.<br><strong>Keywords</strong>: large language models, retrieval-augmented generation, RAG 2.0, dynamic retriever, selfreflection, hallucinations, factual accuracy</p> <p><strong>References</strong><br>1. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks / Lewis M. et al.<br>NeurIPS, 2020. URL: https://medium.com/@adnanmasood/contextually-enriched-knowledgeenhanced-and-externally-grounded-retrieval-models-for-fun.<br>2. RAG 101: Demystifying Retrieval-Augmented Generation Pipelines / Wolff H. NVIDIA<br>Technical Blog, 2023. URL: https://developer.nvidia.com/blog/rag-101-demystifying-retrievalaugmented-generation-pipelines.<br>3. Self-RAG: Self-Reflective Retrieval-Augmented Generation / Asai A. et al.<br>arXiv:2310.11511, 2023. https://doi.org/10.48550/arXiv.2310.11511.<br>4. Contextual AI. Introducing RAG 2.0 / Kiela D. Medium blog post, 2024. URL:<br>https://medium.com/@jackdrummond_16745/introducing-rag-2-0-revolutionising-ai-and-llmdevelopment-71a1f85cc0dd.<br>5. Active Retrieval-Augmented Generation / Mallen E. et al. arXiv: 2409.11136, 2023. URL:<br>https://doi.org/10.48550/arXiv.2409.11136.<br>6. Contextually Enriched, Knowledge-Enhanced, and Externally Grounded Retrieval Models /<br>Masood A. Medium, 2025.<br>7. Promptriever: Promptable Retrieval Models / Weller O. et al. EMNLP, 2024 (preprint). URL:<br>https://medium.com/@techsachin/promptriever-first-zero-shot-promptable-instruction-trainedretriever-model-72e9f2eecbb2.<br>8. Speculative RAG: Enhancing RAG through Drafting / Wang Z. et al. arXiv:2407.08223, 2024.<br>URL: https://doi.org/10.48550/arXiv. 2407.08223.</p>
Олійник Б. О. (Oliinyk B.O.)
Чичкарьов Є. А. (Chychkarоv Ye.A.)
##submission.copyrightStatement##
2025-07-27
2025-07-27
1
131
139
-
ANALYSIS OF BIOMEDICAL 3D DATA SEGMENTATION METHODS USING DEEP LEARNING
https://journals.dut.edu.ua/index.php/sciencenotes/article/view/3268
<p>This article provides a comprehensive review of modern approaches to the segmentation of<br>biomedical 3D scans using deep learning techniques. A comparative analysis of neural network<br>architectures is conducted, particularly convolutional neural networks (CNNs), Transformers, and the latest<br>Mamba-type models, which offer varying levels of computational complexity, accuracy, and generalization<br>capability. The advantages of hybrid architectures, multimodal approaches, and pretraining strategies –<br>including self-supervised learning and generative adversarial networks (GANs) – are described as methods<br>to improve performance under conditions of limited labeled data. The article highlights current<br>segmentation challenges related to the high complexity of biomedical images, variability in scanning<br>protocols, and resource constraints. Practical recommendations are offered for selecting the appropriate<br>architecture based on task requirements, dataset characteristics, and available computational resources.<br>Standard evaluation metrics (e.g., Dice coefficient, Hausdorff distance) and the use of publicly available<br>medical datasets (BraTS, LiTS, ACDC) for model benchmarking are also discussed.<br><strong>Keywords</strong>: medical image segmentation, 3D biomedical data, deep learning, convolutional neural<br>networks, transformers, Mamba architecture, medical imaging, multimodal data, data augmentation, neural<br>models, computational efficiency, self-supervised learning, BraTS, LiTS, ACDC</p> <p><strong>References</strong><br>1. Ronneberger, O., Fischer, P., & Brox, T. U-Net: Convolutional networks for biomedical image<br>segmentation. MICCAI, 234–241.<br>2. Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Xing, L. TransUNet: Transformers Make<br>Strong Encoders for Medical Image Segmentation. arXiv preprint arXiv:2102.04306.<br>3. Hatamizadeh, A., Nath, V., Liu, Y., Yin, Z., Kapp, D., & Tagare, H. Swin-Unet: Unet-like Pure<br>Transformer for Medical Image Segmentation. arXiv preprint arXiv:2205.05003.<br>4. Zhang, Y., Yang, J., & Wang, Q. GAN-based data augmentation for liver tumor segmentation<br>in CT scans. Medical Image Analysis, 78, 102401.<br>5. Zhou, Z., Seyedhosseini, M., & Tasdizen, T. Self-supervised learning for 3D medical image<br>segmentation. EEE Transactions on Medical Imaging, 42(3), 901–912.<br>6. Kim, H., Lee, J., & Park, J. Efficient3DNet: Lightweight 3D convolutional networks for fast<br>medical image segmentation. Computerized Medical Imaging and Graphics, 100, 102198.<br>7. S. Niyas, S.J. Pawan, M. Anand Kumar, Jeny Rajan. Medical image segmentation with 3D<br>convolutional neural networks: A survey. Neurocomputing, Volume 493,7 July 2022, Pages 397-413<br>https://doi.org/10.1016/j.neucom.2022.04.065.<br>8. Ali Hatamizadeh, Yucheng Tang, Vishwesh Nath, Dong Yang, Andriy Myronenko, Bennett<br>Landman, Holger R. Roth, Daguang Xu; Proceedings of the IEEE/CVF Winter Conference on<br>Applications of Computer Vision (WACV), 2022, pp. 574-584<br>9. Zhaohu Xing, Tian Ye, Yijun Yang, Guang Liu, Lei Zhu. SegMamba: Long-range Sequential<br>Modeling Mamba For 3D Medical Image Segmentation. (2024)<br>https://doi.org/10.48550/arXiv.2401.13560.<br>10. Md. Eshmam Rayed, S.M. Sajibul Islam, Sadia Islam Niha, Jamin Rahman Jim, Md Mohsin<br>Kabir, M.F. Mridha. Deep learning for medical image segmentation: State-of-the-art advancements<br>and challenges. ELSEVIER Volume 47, 2024,101504https://doi.org/10.1016/j.imu.2024.101504.</p>
Лащевська Н. О. (Lashchevska N.O.)
Черевик О. В. (Cherevyk O.V.)
##submission.copyrightStatement##
2025-07-27
2025-07-27
1
140
147
-
SCALABILITY PROBLEMS OF SOFTWARE-DEFINED NETWORKS
https://journals.dut.edu.ua/index.php/sciencenotes/article/view/3269
<p>Softwaredefined networking (SDN) has enormous potential to transform network infrastructure, but there are<br>significant challenges on the road to widespread adoption. And scalability is a key challenge. Given the<br>rapid growth in data volumes, the number of connected devices, and bandwidth requirements, the ability of<br>SDN to scale effectively is critical. If an SDN controller cannot cope with a large number of devices and<br>data flows, this can lead to performance degradation, latency, and even network failures. Research<br>initiatives aimed at addressing scalability issues in SDN are extremely relevant. These could include<br>developing more efficient flow control algorithms. This would allow the controller to handle a larger<br>number of requests without compromising performance. Addressing the scalability issue, along with other<br>issues such as security, legacy compatibility, and management complexity, is key to realizing the full<br>potential of software-defined networks and providing operators with the efficient, flexible, and scalable<br>infrastructure they need. SDN scalability studies show that these problems are often not caused by SDN<br>and are not fundamentally unique to it, and most of these problems can be solved without losing the benefits<br>of SDN. If a network has tens of thousands of switching elements and can grow rapidly, the sheer number<br>of control events generated in any network of this scale is enough to overwhelm any centralized controller.<br>One way to solve this problem is to proactively enforce rules on the switches, effectively eliminating most<br>control requests before they reach the control plane. Nodes in SDN networks can be geographically<br>distributed, and the large diameter of these networks exacerbates the scalability problems of controllers.<br>Physical partitioning of the network can be used to divide it into separate regions; each partition can be<br>managed by an independent controller, and these controllers can exchange only the necessary state change<br>events, effectively hiding most events from external controllers.<br><strong>Keywords</strong>: Software-defined network (SDN), SDN controller, scalability, performance, control<br>plane, data plane, ASIC, Open vSwitch</p> <p><strong>References</strong><br>1. Rajat Chaudhary, Gagangeet Singh Aujla, Neeraj Kumar, Pushpinder Kaur Chouhan. A<br>comprehensive survey on software-defined networking for smart communities. Int J Commun Syst.<br>2022. DOI:10.1002/dac.5296 – p. 50.<br>2. SDN: Software Defined Networks: An Authoritative Review of Network Programmability<br>Technologies, Thomas D. Nadeau, Ken Gray. Copyright © 2013. All rights reserved. Printed in the<br>United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,<br>Sebastopol, CA 95472. – p. 382<br>3. Гніденко М.П., Вишнівський В.В., Ільїн О.О. Побудова SDN мереж. – Навчальний<br>посібник. – Київ: ДУТ, 2019. – 190 с.<br>4. Kim, H.J., Santos, J.R., Turner, Y., Schlansker, M., Tourrilhes, J., Feamster, N., "CORONET:<br>Fault Tolerance for Software-Defined Networks,"Proceedings,2012 20th IEEE International<br>Conference on Network Protocols (ICNP), pp.1–2, October 30–November 2, 2018.<br>5. Voellmy, A.,Wang, J.C., "Scalable Software-Defined Network Controllers," Proceedings,<br>ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols for<br>Computer Communication, pp. 289–290, 2019.</p>
Гніденко М. М. (Hnidenko M.M.)
Шепетун О. О. (Shepetun O.O.)
##submission.copyrightStatement##
2025-07-27
2025-07-27
1
148
154
-
A TOPOLOGICAL APPROACH TO RASTER GRAPHICS VECTORIZATION BASED ON SIMPLICIAL COMPLEXES
https://journals.dut.edu.ua/index.php/sciencenotes/article/view/3270
<p>This paper elaborates a topological approach to raster graphics vectorization using<br>methods of Topological Data Analysis (TDA): simplicial complexes and persistent homology. The primary<br>focus is on the development of an algorithm for the construction of simplicial complexes, which is an<br>essential tool for identifying the structural and spatial characteristics of an image. The properties of<br>simplicial complexes in the context of pixel-based data analysis are investigated, and an algorithm for<br>generating simplicial structures from raster images is proposed. The developed approach enables effective<br>analysis of topological relationships between pixels and facilitates the extraction of significant components<br>for subsequent transformation into a vector representation. A simplicial homology search algorithm is also<br>described. The proposed method enhances image segmentation accuracy, which is critical for high-quality<br>vectorization, particularly in cases of complex geometry, structural heterogeneity, and image noise. The<br>results demonstrate the potential of topological methods for improving image preprocessing and<br>segmentation, offering new perspectives in vectorization tasks. The research lays a foundation for further<br>algorithmic development and practical implementation in computer graphics and image processing<br>applications.<br><strong>Keywords</strong>: image vectorization, simplicial complexes, topological data analysis, image<br>segmentation, raster graphics, TDA, topological methods, Vietoris-Rips complex, persistent homology</p> <p><strong>References</strong><br>1. Zomorodian, A., & Carlsson, G. (2005). Computing persistent homology. Discrete &<br>Computational Geometry, 33(2), 249–274. URL: https://doi.org/10.1007/s00454-004-1146-<br>yOUCI+3ResearchGate+3OUCI+3.<br>2. Edelsbrunner, H., Letscher, D., & Zomorodian, A. (2002). Topological persistence and<br>simplification. Discrete & Computational Geometry, 28(4), 511–533. URL:<br>https://doi.org/10.1007/s00454-002-2885-2.<br>3. Zomorodian, A. (2010). Fast construction of the Vietoris-Rips complex. Computers &<br>Graphics, 34(3), 263–271. URL: https://doi.org/10.1016/j.cag.2010.03.007.<br>4. Munch, E. (2017). A user’s guide to topological data analysis. Journal of Learning Analytics,<br>4(2), 47–61. URL: https://doi.org/10.18608/jla.2017.42.6.<br>5. Tausz, A., & Carlsson, G. (2011). Homological coordinatization. arXiv. URL:<br>https://arxiv.org/abs/1107.0511arXiv.<br>6. Carlsson, G. (2009). Topology and data. Bulletin of the American Mathematical Society,<br>46(2), 255–308. URL: https://doi.org/10.1090/S0273-0979-09-01249-X.<br>7. Yang, Z., Sun, Y., Liu, S., Shen, C., Jia, J. (2020). Dense RepPoints: Representing visual<br>objects with dense point sets. In A. Vedaldi, H. Bischof, T. Brox, & J. M. Frahm (Eds.), Computer<br>Vision – ECCV 2020 (Vol. 12366, pp. 226–242). Springer. URL: https://doi.org/10.1007/978-3-030-<br>58589-1_14.<br>8. Roussel, J.-R., Bourdon, J.-F., Morley, I. D., Coops, N. C., Achim, A. (2023). Vectorial and<br>topologically valid segmentation of forestry road networks from ALS data. International Journal of<br>Applied Earth Observation and Geoinformation, 118, 103267. URL:<br>https://doi.org/10.1016/j.jag.2023.103267.<br>9. Edelsbrunner, H., & Harer, J. (2010). Computational topology: An introduction. American<br>Mathematical Society.<br>10. Carlsson, G., & Vejdemo-Johansson, M. (2021). Topological data analysis with applications<br>(1st ed.). Cambridge University Press. URL: https://doi.org/10.1017/9781108975704.<br>11. Yesilli, M. C., & Khasawneh, F. A. (2021). Data-driven and automatic surface texture<br>analysis using persistent homology. In 2021 20th IEEE International Conference on Machine<br>Learning and Applications (ICMLA) (pp. 1350–1356). IEEE. URL:<br>https://doi.org/10.1109/ICMLA52953.2021.00219.<br>12. Corcoran, P., & Jones, C. B. (2023). Topological data analysis for geographical information<br>science using persistent homology. International Journal of Geographical Information Science,<br>37(3), 712–745. URL: https://doi.org/10.1080/13658816.2022.2155654.<br>13. Snášel, V., Nowaková, J., Xhafa, F., & Barolli, L. (2017). Geometrical and topological<br>approaches to big data. Future Generation Computer Systems, 67, 286–296. URL:<br>https://doi.org/10.1016/j.future.2016.06.005(upcommons.upc.edu).<br>14. Юрчук, І. А. (2014). Метод сталих гомологій топологічного аналізу даних. Наукоємні<br>технології, (3)23, 289. URL: https://jrnl.nau.edu.ua/index.php/SBT/article/view/7397/8431.<br>15. De Silva, V., Morozov, D., & Vejdemo-Johansson, M. (2011). Dualities in persistent<br>(co)homology. Inverse Problems, 27(12), 124003. URL: https://doi.org/10.1088/0266-<br>5611/27/12/124003.<br>16. Edelsbrunner, H., & Harer, J. (2010). Computational topology: An introduction. American<br>Mathematical Society.<br>17. Carlsson, G., & Vejdemo-Johansson, M. (2021). Topological data analysis with applications<br>(1st ed.). Cambridge University Press. URL: https://doi.org/10.1017/9781108975704.<br>18. Snášel, V., Nowaková, J., Xhafa, F., & Barolli, L. (2017). Geometrical and topological<br>approaches to big data. Future Generation Computer Systems, 67, 286–296. URL:<br>https://doi.org/10.1016/j.future.2016.06.005(upcommons.upc.edu).<br>19. Huber, S. (2021). Persistent homology in data science. In P. Haber, T. Lampoltshammer, M.<br>Mayr, & K. Plankensteiner (Eds.), Data Science – Analytics and Applications (pp. 81–88). Springer<br>Fachmedien Wiesbaden. URL: https://doi.org/10.1007/978-3-658-32182-6_13(OUCI).<br>20. Wong, C.-C., & Vong, C.-M. (2021). Persistent homology based graph convolution network<br>for fine-grained 3D shape segmentation. In Proceedings of the IEEE/CVF International Conference<br>on Computer Vision (ICCV), IEEE. URL:<br>https://doi.org/10.1109/ICCV48922.2021.00701(ResearchGate).<br>21. Lum, P. Y., Singh, G., Lehman, A., Ishkanov, T., Vejdemo-Johansson, M., Alagappan, M.,<br>Carlsson, J., & Carlsson, G. (2013). Extracting insights from the shape of complex data using<br>topology. Scientific Reports, 3, p. 1236. URL: https://doi.org/10.1038/srep01236.<br>22. van Veen, H. J., Saul, N., Eargle, D., & Mangham, S. W. (2019). Kepler Mapper: A flexible<br>Python implementation of the Mapper algorithm. Journal of Open Source Software, 4(42), 1315.<br>URL: https://doi.org/10.21105/joss.01315(joss.theoj.org).<br>23. Otter, N., Porter, M. A., Tillmann, U., Grindrod, P., & Harrington, H. A. (2017). A roadmap<br>for the computation of persistent homology. EPJ Data Science, 6, 17. URL:<br>https://doi.org/10.1140/epjds/s13688-017-0109-5(SpringerOpen).</p>
Сітко Д. О. (Sitko D.O.)
Гніденко М. П. (Hnidenko M.P.)
##submission.copyrightStatement##
2025-07-27
2025-07-27
1
155
164
-
USING CLOUD TECHNOLOGIES IN THE DEVELOPMENT OF A TELEGRAM CHATBOT IN PYTHON USING SQLITE DATABASE
https://journals.dut.edu.ua/index.php/sciencenotes/article/view/3271
<p>Using cloud technologies<br>in the development of a Telegram chatbot in Python using the SQLite database. This article analyzes<br>chatbots and reveals the role that bots play in the modern world. The project was implemented using the<br>Python programming language and the PyCharm integrated development environment. In the process of<br>developing the Telegram chatbot, preference was given to using the SQLite database. To ensure<br>communication with the Telegram messenger, the Aiogram, Sqlite packages and the communication<br>interface with the Telegram Bot API application were used. The bot was officially registered in Telegram<br>with a unique search identifier @TgSQL_bot. Testing was carried out both during the development process<br>and after completion, including manual testing of the functioning and response speed of the program to<br>verify the correctness of the bot's operation. This chatbot is an effective tool for controlling financial<br>expenses through the Telegram messenger, it provides users with convenient access to the necessary<br>information and the ability to interact with it in real time.<br><strong>Keywords</strong>: Telegram chatbot, Python programming language, SQLite database</p> <p><strong>References</strong><br>1. Що таке чат-бот: секрети використання та основні переваги для бізнесу. HelpCrunch.<br>URL: https://helpcrunch.com/blog/uk/shcho-take-chat-bot/.<br>2. Чат-бот. Переваги, засоби використання та як створити бота. Gerabot. URL:<br>https://gerabot.com/article/detalno_pro_chatboti.<br>3. Месенджери довіри. Reputation Construction. URL:<br>https://reputation.construction/mediatrust2023<br>4. Для 50,6% читачів основним месенджером є Telegram. Результати опитування AIN.UA.<br>URL: https://ain.ua/2023/03/09/telegram-osnovnyj-mesendzher-opytuvannya/.<br>5. Lutz M. Learning Python: Powerful Object-Oriented Programming. – O’Reilly, 2025. – 1501<br>p.<br>6. Hillard D. Practices of the Python Pro. Manning, 2019. 248 p.<br>7. Scavetta R. J., Angelov A. Python and R for the Modern Data Scientist: The Best of Both<br>Worlds. O’Reilly, 2021. 198 p.<br>8. Ernesti J., Kaiser P. Python 3: The Comprehensive Guide to Hands-On Python Programming.<br>Rheinwerk Computing, 2022. 1078 p.<br>9. Gorelick M., Ozsvald I. High Performance Python: Practical Performant Programming for<br>Humans. O’Reilly, 2020. 469 p.<br>10. Beaulieu A. Learning SQL: Generate, Manipulate, and Retrieve Data. O’Reilly, 2020. 380 p.<br>11. Кращі IDE для Python в 2023 році. Блог Mate academy. URL:<br>https://mate.academy/blog/python/ide-for-python-2023/.<br>12. Smetana M. Y. How Python brings efficiency to chatbots: enhancing user experience with<br>magic filters in Aiogram. Connectivity. 2024. Vol. 168, no. 2. URL: https://doi.org/10.31673/2412-<br>9070.2024.025559.<br>13. Що таке API: навіщо використовується програмістами та базові основи роботи з ним.<br>Академія ITSTEP. URL: https://cloud.itstep.org/blog_3/what-is-an-api-why-is-it-used-byprogrammers-and-the-basics-of-working-with-it.<br>14. Лавренчук C., Чабан А. Дослідження зміни погодних умов за допомогою Telegram Bot<br>API. COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION.<br>2020. № 41. С. 46–50. URL: https://doi.org/10.36910/6775-2524-0560-2020-41-08.<br>15. SQLite / K. P. Gaffney et al. Proceedings of the VLDB Endowment. 2022. Vol. 15, no. 12.<br>P. 3535–3547. URL: https://doi.org/10.14778/3554821.3554842.<br>16. de Quattro A. Guide to SQLite: Practical Guide. Independently Published, 2024. 118 p.<br>17. BotFather. Можливості, команди та функціонал. Gerabot. URL:<br>https://gerabot.com/article/botfather_mozhlivosti_ta_funkcional.<br>18. Chatbot Analysis / Mr. Bhor Shubham et al. International Journal of Advanced Research in<br>Science, Communication and Technology. 2022. P. 405–408. URL: https://doi.org/10.48175/ijarsct3547.<br>19. Using Python on PythonAnywhere. Python for Everybody. URL:<br>https://www.py4e.com/software-pyaw.php.<br>20. Python in the Cloud: Let’s Explore PythonAnywhere and Other Alternatives. Codemotion.<br>URL: https://www.codemotion.com/magazine/languages/python-in-the-cloud-lets-pythonanywhereand-other-alternatives/.</p>
Шикула О. М. (Shykula O.M.)
Коник С. П. (Konyk S.P.)
Білоусова С. В. (Bilousova S.V.)
Прокопов С. В. (Prokopov S.V.)
Саміляк І. М. (Samiliak I.M.)
##submission.copyrightStatement##
2025-07-27
2025-07-27
1
165
177
-
DEVELOPMENT OF THE WEB APPLICATION "TASKMASTER" USING REACT, NODE.JS, MONGODB IN A CLOUD ENVIRONMENT
https://journals.dut.edu.ua/index.php/sciencenotes/article/view/3272
<p>The article analyzed the market of web applications for task management, described existing<br>analogues, their advantages and disadvantages. The client and server parts of the application were<br>implemented. The client part includes components for entering, displaying and managing tasks, while the<br>server part provides data storage and processing in the database.<br>Using modern technologies React, Node.js, MongoDB and other modern tools, a task management<br>application was created, which ensures high reliability and efficiency of the application. The component<br>approach makes it easy to add new functions and change existing ones without much effort. Thanks to the<br>use of virtual DOM in React and optimized rendering, the application responds quickly to user actions.<br>Using Redux allows you to centrally manage the state of the application, which ensures its stable operation<br>even with a large number of tasks and simplifies its maintenance. Thanks to MongoDB Atlas, data is stored<br>in the cloud, which ensures its availability and security.<br><strong>Keywords</strong>: web application, task management, React, Node.js, MongoDB</p> <p><strong>References</strong><br>1. Schwarzmüller M. React Key Concepts: An in-depth guide to React's core features. Packt<br>Publishing, 2025. 544 p.<br>2. Mammino L. Node.js Design Patterns. JS, 2020. 660 p.<br>3. Aleksendric M., Borucki A., Domingues L. Mastering MongoDB 7.0: Achieve data excellence<br>by unlocking the full potential of MongoDB. Packt Publishing, 2024. 434 p.<br>4. Rappin N. Modern CSS with Tailwind. Flexible Styling Without the Fuss. Pragmatic<br>Bookshelf, 2022. 104 p.<br>5. Bhat K. Ultimate Tailwind CSS Handbook: Build sleek and modern websites with immersive.<br>Orange Education Pvt Ltd, 2023. 294 p.<br>6. React Router / React Router Documentation. URL: https://reactrouter.com/en/main.<br>7. Brown E. Web Development with Node and Express: Leveraging the JavaScript Stack.<br>O'Reilly, 2019. 340 p.<br>8. Garreau M., Faurot W. Redux in Action. Manning, 2018. 312 p.<br>9. Redux Toolkit / Redux Toolkit Documentation. URL: https://redux-toolkit.js.org/.<br>10. Building Applications with React and Redux / Pluralsight. URL:<br>https://www.pluralsight.com/courses/react-redux-react-router-es6.<br>11. Learning React: Functional Web Development with React and 18. Redux / O'Reilly Media.<br>URL: https://www.oreilly.com/library/view/learning-react-2nd/9781492051718/.<br>12. Full-Stack Web Development with React / Coursera. URL:<br>https://www.coursera.org/learn/full-stack-react.<br>13. React Hooks / React Documentation. URL: https://legacy.reactjs.org/docs/hooks-intro.html<br>14. HTTP Methods / Avior API Documentation. URL:<br>https://www.contrive.mobi/aviorapi/HTTPMETHODS.html.<br>15 Pro MERN Stack: Full Stack Web App Development with Mongo, Express, React, and Node.<br>/ Apress. URL: https://www.apress.com/gp/book/9781484243906.<br>16. Mastering Node.js / Packt Publishing. URL: https://www.packtpub.com/product/masteringnode-js/9781785888960.<br>17. Advanced Node.js Development / Udemy. URL: https://www.udemy.com/course/advancednodejs-development/.<br>18. Express in Action: Writing, Building, and Testing Node.js Applications / Manning<br>Publications. URL: https://www.manning.com/books/express-in-action.<br>19. MongoDB: The Definitive Guide / O'Reilly Media. URL:<br>https://www.oreilly.com/library/view/mongodb-the-definitive/9781491954454/.</p>
Вишнівський В. В. (Vyshnivskyi V.V.)
Шикула О. М. (Shykula O.M.)
Довженко Т. П. (Dovzhenko T.P.)
Двуреченський Є. А. (Dvurechenskyi Y.A.)
Сєрих С. О. (Sierykh S.O.)
##submission.copyrightStatement##
2025-07-27
2025-07-27
1
178
187
-
USING CLOUD TECHNOLOGIES IN THE DEVELOPMENT OF AN INSTANT USER SUPPORT SYSTEM BASED ON PHP AND AJAX
https://journals.dut.edu.ua/index.php/sciencenotes/article/view/3273
<p>The article reviews and<br>analyzes existing instant support systems, analyzes user needs and requirements for instant support. As a<br>result of the analysis, key functions and capabilities that should be available in the system were identified.<br>An instant support system based on the PHP programming language and the use of Ajax technology<br>to ensure speed and interactivity was designed and developed. The use of these technologies allowed for<br>high-speed processing of requests and providing answers without the need to reload the page, which<br>significantly increases the convenience of using the system.<br>The developed instant support system has great potential for use in various industries where it is<br>necessary to provide fast and high-quality user service. The possibilities for further development and<br>improvement of the system, in particular through integration with advanced artificial intelligence<br>algorithms and the development of an adaptive interface, open up new prospects for improving the quality<br>of service and meeting user needs.<br><strong>Keywords</strong>: instant support system, requirements analysis, system development, PHP, JavaScript,<br>Ajax, SQLite DBMS</p> <p><strong>References</strong><br>1. Stuttard D., Pinto M. The Web Application Hacker's Handbook: Finding and Exploiting<br>Security Flaws. NY: Wiley, 2020. 912 c.<br>2. Ballad T., Confer W. Securing PHP Web Applications. MA: Syngress, 2008. 304 c.<br>3. Snyder C., Southwell M., Owad T. PHP Security. CA: O'ReillyMedia, 2005. 428 c.<br>4. Barnett R.C. Preventing Web Attacks with Apache. NJ: Pearson Education, 2006. 448 c.<br>5. Schlossnagle G. Advanced PHP Programming. NJ: Pearson Education, 2004. 224 c.<br>6. Bergmann S., Priebsch S. Foundations of PHP for Web Developers. NY: Apress, 2015. 372<br>c.<br>7. Zandstra M. PHP Objects, Patterns, and Practice. NY: Apress, 2013. 536 c.<br>8. Nixon R. Learning PHP, MySQL & JavaScript. CA: O'Reilly Media, 2018. 832 c.<br>9. McDonald M., McGovern J., et al. Web Security for Developers: Real Threats, Practical<br>Defense. CA: O'Reilly Media, 2022. 542 c.<br>10. Wenz C. PHP Phrasebook. IN: Addison-Wesley, 2005. 480 c.<br>11. Nixon R. Modern PHP: New Features and Good Practices. CA: O'ReillyMedia, 2015. 268 c.<br>12. Welling L., Thomson L. PHP and MySQL Web Development. CA: Addison-Wesley, 2017.<br>672 c.<br>13. Duckett J. PHP & MySQL: Novice to Ninja. UK: SitePoint, 2017. 690 c.<br>14. Shiflett C. Essential PHP Security. CA: O'Reilly Media, 2005. 100 c.<br>15. Sklar D., Trachtenberg A. PHP Cookbook. CA: O'Reilly Media, 2014. 820 c.<br>16. Bergmann S., Priebsch S. PHPUnit Pocket Guide. CA: O'ReillyMedia, 2005. 120 c.<br>17. Ullman L. PHP and MySQL for Dynamic Web Sites. CA: PeachpitPress, 2017. 696 c.</p>
Шикула О. М. (Shykula O.M.)
Іщеряков С. М. (Ishcheryakov S.M.)
Савончук Д. В. (Savonchuk D.V.)
Антонов В. В. (Antonov V.V.)
##submission.copyrightStatement##
2025-07-27
2025-07-27
1
187
194
-
METHOD FOR LOCALIZING NODES IN WIRELESS SENSOR NETWORKS BASED ON THE RECONSTRUCTION OF SPARSE DISTANCE MATRICES
https://journals.dut.edu.ua/index.php/sciencenotes/article/view/3274
<p>The article considers modern methods for localizing nodes<br>in wireless sensor networks with an emphasis on increasing the positioning accuracy by combining classical<br>multidimensional scaling (MDS) with greedy heuristic algorithms and methods for restoring the sparse<br>matrix of RSSI signals. A comprehensive approach to detecting anomalies and errors in measurements<br>using spectral analysis and machine learning algorithms is proposed. Experimental modeling in MATLAB<br>was carried out, which confirmed the effectiveness of the developed methods in various network operation<br>scenarios. The results obtained have practical significance for increasing the reliability, security, and<br>performance of wireless sensor networks, which is important for the development of modern Internet of<br>Things (IoT) systems and industrial applications.<br><strong>Keywords</strong>: wireless sensor networks, localization, multidimensional scaling (MDS), greedy<br>heuristics, RSSI, matrix reconstruction, anomaly detection, spectral analysis, machine learning, MATLAB,<br>Internet of Things (IoT), network security, positioning, measurement errors</p> <p><strong>References</strong><br>1. Shakunt, P.S. Diagnosis of Faults in Wireless Sensor Networks Through Machine Learning<br>Approach. Human-Centric Smart Computing. ICHCSC 2023. Smart Innovation, Systems and<br>Technologies. 2023. 376. URL: https://doi.org/10.1007/978-981-99-7711-6_17.<br>2. Ridha M. A., Nickray M. Fault Detection in Wireless Sensor Networks Using Horse Herd<br>Algorithm and Convolutional Neural Network with Attention Layer. Journal of Electrical Systems.<br>2024. Vol. 20, no. 11. P. 3291–3309. URL: https://doi.org/10.52783/jes.8086.<br>3. Feghhi M. M., Alsharfa R. M., Majeed M. H. Efficient Fault Detection in WSN Based on<br>PCA-Optimized Deep Neural Network Slicing Trained with GOA. International Journal of<br>Intelligent Engineering and Systems. 2025. Vol. 18, no. 5.<br>URL: https://doi.org/10.48550/arXiv.2505.07030.<br>4. Padhi R., Muduli D., Sharma S. Automated Fault Diagnosis System in Wireless Sensor<br>Network: A Fault Node Recovery Algorithm Approach. Recent Advances in Signals and Systems.<br>VSPICE 2023. Lecture Notes in Electrical Engineering. 2024. No. 1227.<br>URL: https://doi.org/10.1007/978-981-97-4657-6_25.<br>5. Mederos-Madrazo B., Diaz-Roman J., Enriquez-Aguilera F. Dealing with Outliers in Wireless<br>Sensor Networks Localization: An Iterative and Selection-Minimization Strategy. Int J Netw Distrib<br>Comput. 2024. P. 41–52. URL: https://doi.org/10.1007/s44227-024-00024-1.</p>
Кириченко Р. М. (Kyrychenko R.M.)
##submission.copyrightStatement##
2025-07-27
2025-07-27
1
195
202
-
АNALYSIS OF WAYS TO USE ARTIFICIAL INTELLIGENCE TO IMPROVE MONITORING OF SECURE ITINFRASTRUCTURE
https://journals.dut.edu.ua/index.php/sciencenotes/article/view/3275
<p>The article is dedicated to the analysis of various ways of applying artificial intelligence<br>for monitoring the protected IT infrastructure. The modern world is undergoing rapid technological<br>transformation, where information technologies play a key role in the functioning of almost all aspects of<br>our lives. Information technology infrastructure becomes not only critically important for supporting<br>businesses and organizations but also determines the convenience and efficiency of using and developing<br>digital services in the modern world. Ensuring the continuity and optimal functioning of IT infrastructure<br>is of paramount importance for businesses, organizations, and society as a whole. In this regard, the<br>application of artificial intelligence for monitoring and supporting IT infrastructure proves to be a powerful<br>tool for predicting, detecting, and resolving issues before they strengthen and affect efficiency. Today’s IT<br>infrastructure is becoming increasingly complex and voluminous, requiring constant monitoring to timely<br>respond to possible failures or malfunctions that may lead to disruptions in work, financial losses, or even<br>threats to data security. In this context, the application of artificial intelligence becomes crucial as it can<br>provide fast, accurate, and forecasted solutions based on the analysis of a vast amount of data and previous<br>patterns of failures.<br><strong>Keywords</strong>: vulnerabilities, IT infrastructure monitoring, cybersecurity, artificial intelligence</p> <p><strong>References</strong><br>1. Cisco Secure Network Analytics (formerly Stealthwatch) At-a-Glance. URL:<br>https://www.cisco.com/c/en/us/products/collateral/security/stealthwatch/ secure-network-analyticsaag.html<br>2. Darktrace DETECT | Autonomous Threat Detection. Darktrace | The Essential AI<br>Cybersecurity Platform. URL: https://www.darktrace.com/products/detect<br>3. Vectra AI | Cybersecurity AI That Stops Attacks Others Canât. Vectra AI | Cybersecurity<br>AI That Stops Attacks Others CanâTMt. URL: https://www.vectra.ai<br>4. Uraikul V., Chan C. W., Tontiwachwuthikul P. Artificial intelligence for monitoring and<br>supervisory control of process systems. Engineering Applications of Artificial Intelligence. 2007.<br>Vol. 20, no. 2. P. 115–131. URL: https://doi.org/10.1016/j.engappai.2006.07.002<br>5. Using a multi-agent system and artificial intelligence for monitoring and improving the<br>cloud performance and security / D. Grzonka et al. Future Generation Computer Systems. 2018. Vol.<br>86. P. 1106–1117. URL: https://doi.org/10.1016/j.future.2017.05.046<br>6. US9886955B1 - Artificial intelligence for infrastructure management - Google Patents.<br>Google Patents. URL: https://patents.google.com/patent/US9886955B1/en<br>7. Reddy Yeruva A. Monitoring Data Center Site Infrastructure Using AIOPS Architecture.<br>Eduvest – Journal of Universal Studies. 2023. Vol. 3, no. 1. P. 265–277. URL:<br>https://doi.org/10.36418/eduvest.v3i1.732<br>8. Dong W. AIOps Architecture in Data Center Site Infrastructure Monitoring. Computational<br>Intelligence and Neuroscience. 2022. Vol. 2022. P. 1–12. URL:<br>https://doi.org/10.1155/2022/1988990<br>9. McMillan L., Varga L. A review of the use of artificial intelligence methods in infrastructure<br>systems. Engineering Applications of Artificial Intelligence. 2022. Vol. 116. P. 105472. URL:<br>https://doi.org/10.1016/j.engappai.2022.105472<br>10. Катков Ю. І., Березовська Ю. В., Заднепрянець О. Ю. Дослідження способів<br>застосування штучного інтелекту для моніторингу ІТ-інфраструктури. Актуальні проблеми<br>кібербезпеки: матеріали Всеукр. науково-практ. конф., м. Київ, 27 жовтня 2023. Київ, 2023.<br>С. 121–122.<br>11. Bazzell, M. (2021). Open Source Intelligence Techniques: Resources for Searching and<br>Analyzing Online Information (9th ed.). IntelTechniques.<br>12. Rid, T. (2020). Active Measures: The Secret History of Disinformation and Political<br>Warfare. Farrar, Straus and Giroux.<br>13. Hulnick A. S. What's wrong with the Intelligence Cycle. Intelligence and National Security.<br>2006. Vol. 21, no. 6. P. 959–979. URL: https://doi.org/10.1080/02684520601046291<br>14. Salganik, M. J. (2018). Bit by Bit: Social Research in the Digital Age. Princeton University<br>Press.<br>15. Monroe B. L., Colaresi M. P., Quinn K. M. Fightin' Words: Lexical Feature Selection and<br>Evaluation for Identifying the Content of Political Conflict. Political Analysis. 2008. Vol. 16, no. 4.<br>P. 372–403. URL: https://doi.org/10.1093/pan/mpn018<br>16. NATO. (2022). NATO Open Source Intelligence Handbook. NATO Intelligence Division.<br>URL: https://www.nato.int<br>17. Kruschwitz, U., & Hull, R. (2017). Searching the Enterprise. Foundations and Trends® in<br>Information Retrieval, 11(1), 1–142. URL: https://doi.org/10.1561/1500000050.<br>18. Lazer, D., Pentland, A. S., Adamic, L., Aral, S., Barabási, A.-L., Brewer, D., ... & Van<br>Alstyne, M. (2009). Life in the network: The coming age of computational social science. Science,<br>323(5915), 721–723. URL: https://doi.org/10.1126/science.1167742<br>19. Europol. (2023). Internet Organised Crime Threat Assessment (IOCTA). URL:<br>https://www.europol.europa.eu<br>20. Graphika. (2023). Network Analysis Reports. URL: https://www.graphika.com<br>21. OSINT Framework. URL: https://osintframework.com/<br>22. Функціональна стійкість інформаційних мереж при наявності обмеженої апріорної<br>інформації про надійність / Ю. Березовська та ін. Зв’язок. 2020. № 6(148). С. 42–46.<br>23. Березовська Ю. Інформаційні системи безперервного використання з часовим<br>резервуванням. Сучасні досягнення компанії Hewlett Packard Enterprise в галузі IT та нові<br>можливості їх вивчення і застосування : тези доп. Міжнар. науково-практ. конф., м. Київ, 16<br>груд. 2020 р. Київ, 2020. С. 6–8.</p>
Катков Ю. І. (Katkov Yu.I.)
Березовська Ю. В. (Berezovska Yu.V.)
Клюєва В. В. (Kliuieva V.V.)
Вишнівський О. В. (Vyshnivskyi O.V.)
Заднепрянець О. Ю. (Zadneprianets O.Yu.)
Рищиковець І. О. (Ryshchykovets I.O.)
##submission.copyrightStatement##
2025-07-27
2025-07-27
1
203
212
-
FEATURES OF ADMINISTERING A CORPORATE NETWORK BASED ON WINDOWS SERVER 2022
https://journals.dut.edu.ua/index.php/sciencenotes/article/view/3276
<p>The article is dedicated to the issue of determining<br>the peculiarities of administering a corporate network based on Windows Server 2022. There is a problem<br>of ensuring the security of the OS Windows Server 2022 using special vulnerability protection mechanisms<br>during the administration of a corporate network. Solving this problem becomes extremely important for<br>businesses and organizations. The IT infrastructure built on the basis of the OS Windows Server 2022 is<br>becoming increasingly complex and voluminous today, requiring constant administration to timely respond<br>to possible failures or malfunctions that may lead to interruptions in work, financial losses, or even threats<br>to data security. Therefore, the application of special vulnerability protection mechanisms for the OS<br>Windows Server 2022 proves to be a powerful tool for anticipating, detecting, and addressing potential<br>issues before they affect its efficiency. The article discusses key aspects and capabilities of vulnerability<br>protection mechanisms for software tools: Common Vulnerability Scoring System; Common<br>Vulnerabilities and Exposures; National Vulnerability Database. It reveals the main aspects and advantages<br>of their application.<br><strong>Keywords</strong>: vulnerabilities, cybersecurity, Common Vulnerability Scoring System; Common<br>Vulnerabilities and Exposures; National Vulnerability Database</p> <p><strong>References</strong><br>1. Microsoft Windows Server 2022 Security Vulnerabilities in 2025. stack.watch – Weekly<br>Security Vulnerability Emails. URL: https://stack.watch/product/microsoft/windows-server-2022/<br>2. 10 New Things in Windows Server 2022 to Know. Geekflare. URL:<br>https://geekflare.com/new-features-in-windows-server-2022/<br>3. Даник Ю.Г., Катков Ю.І., Пічугін М.Ф. Національна безпека: запобігання критичним<br>ситуаціям : монографія. Житомир : Рута, 2006. 386 с.<br>4. What's new in Windows Server 2022. Microsoft Learn: Build skills that open doors in your<br>career. URL: https://learn.microsoft.com/en-us/windows-server/get-started/whats-new-in-windowsserver-2022<br>5. Windows Server 2022 Security Hardening best practices. Virtualization Howto. URL:<br>https://www.virtualizationhowto.com/2021/12/windows-server-2022-security-hardening-bestpractices/<br>6. NATIONAL VULNERABILITY DATABASE. NVD – Home. URL: https://nvd.nist.gov<br>7. Катков Ю. І., Локойда А. О. Захист критичної інфраструктури від кібератак і<br>терористичних загроз. «Актуальні проблеми кібербезпеки» : матеріали Всеукр. науково-практ.<br>конф., м. Київ, 27 жовт. 2023 р. Київ, 2023. С. 180–182.<br>8. Windows Server supported networking scenarios. URL: https://learn.microsoft.com/enus/windows-server/networking/windows-server-supported-networking-scenarios<br>9. Common Vulnerability Scoring System v3.1: Specification Document. URL: https://www.first.org/cvss/v3.1/specification-document<br>10. Common Vulnerabilities and Exposures. URL: https://www.cvedetails.com/<br>11. Функціональна стійкість інформаційних мереж при наявності обмеженої апріорної<br>інформації про надійність / Ю. Березовська та ін. Зв’язок. 2020. № 6(148). С. 42–46.<br>12. Березовська Ю. Інформаційні системи безперервного використання з часовим<br>резервуванням. Сучасні досягнення компанії Hewlett Packard Enterprise в галузі IT та нові<br>можливості їх вивчення і застосування : тези доп. Міжнар. науково-практ. конф., м. Київ, 16<br>груд. 2020 р. Київ, 2020. С. 6–8.</p>
Катков Ю. І. (Katkov Yu.I.)
Березовська Ю. В. (Berezovska Yu.V.)
Локойда А. О. (Lokoyda A.O.)
Лупол М. О. (Lupol M.O.)
##submission.copyrightStatement##
2025-07-27
2025-07-27
1
213
220