Modeling a millimeter-wave radio communication channel using RoF technology

DOI №______

  • Кременецька Я. А. (Kremenetska Y.A.) State University of Telecommunications, Kyiv
  • Мельник Ю. В. (Melnyk Yu.V.) State University of Telecommunications, Kyiv
  • Марков С. Ю. (Markov S.Y.) State University of Telecommunications, Kyiv
  • Градобоєва Н. В. (Hradoboyeva N.V.) State University of Telecommunications, Kyiv

Abstract

The paper suggests an approach to the modeling of radio channels in the millimeter range based on quasi-optical modeling of the radio link energy budget, and also on the basis of an analysis of independent noise components produced during the generation of radio signals by photonic methods, as well as interference of the signal. It is analyzed that modern mathematical models of MMD channels often use not fundamental physical approaches, but empirical models based on channel measurements, or approximate models to losses in free space. It is shown that the signal-to-noise ratio, as well as the phase noise component, is of greatest importance in calculating the budget and losses of the millimeter-wave radio channel. It is noted that the new concepts for the development of energy coverage models for 5G and the next generation should be based on models approximating the physical patterns of propagation of radio waves and analysis of noise parameters.

Keywords: millimeter waves, radio-photonics, radio channel capacity, radio link energy budget, signal-to-noise ratio.

References
1. Shannon C. E., “A mathematical theory of communication,” Bell Sys. Tech. J., 27(3) (1948): 379–423.
2. Verdu S., “Spectral efficiency in the wideband regime,” IEEE Trans. Inf. Theory, 48(6) (2002): 1319–1343.
3. Fodor G, “Performance Comparison of Practical Resource Allocation Schemes for Device-to-Device Communications,” Wireless Communications and Mobile Computing 2018file:///C:/Users/%D0%9F%D0%9A/Downloads/3623075%20(2).pdf.
4. Dahlman E., Parkvall S., Skold J., and Beming P., “3G Evolution HSPA and LTE for Mobile Broadband,” Oxford: Academic Press. (2008): 648.
5. Urick V. J., McKinney J. D. and Williams K. J., “Fundamentals of Microwave Photonics,” Hoboken, NJ, USA, Wiley (2015): 488.
6. Rappaport T. S., Xing Y., MacCartney G. R., Molisch Jr., A. F., Mellios E., and Zhang J., “Overview of millimeter wave communications for fifth-generation (5G) wireless networks,” IEEE Transactions on Antennas and Propagation, 65 (12) (2017): 6213-6230. 7. Долуханов М. П., “Распространение радиоволн,” М.: Сов. радио (1972): 152.
8. Rappaport T. S., MacCartney G. R., Samimi Jr., M. K. and Sun S., “Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design,” IEEE Transactions on Communications, 63(9) (2015): 3029-3056.
9. Rothman L. S. et al., “High-resolution transmission molecular absorption database harvard-smithson center for astrophysics,” 2014: - https://www.cfa.harvard.edu. 10. Rappaport T. S. et al, “Millimeter wave mobile communications for 5G cellular: it will work!,” Proceedings IEEE, 1(10) (2013): 335-349. 11. Хансен Р. С., “Фазированные антенные решетки,” М. : Техносфера (2012): 560. 12. Скляр Б., “Цифровая связь. Теоретические основы и практическое применение”, М.: Вильямс (2003): 1104. 13. Razavi B., “Design of Millimeter-Wave CMOS Radios: A Tutorial,” IEEE Transactions on Circuits and Systems, 56(1) 2009: 4-16. 14. Yong S. K., Xia P., and Valdes-Garcia A., “60GHz Technology for Gbps WLAN and WPAN,” John Wiley & Sons, (2011): 1-16. 15. Niknejad A. M. and Hashemi H., “Mm-Wave Silicon Technology, 60 GHz and Beyond,” Springer, ISBN 978-0-387-76558-7, USA, (2008): 1-302. 16. Кременецька Я.А., Фелінський Г.С., Мельник Ю.В., Бондаренко Є.О., “Особливості формування сигналів міліметрового та терагерцового діапазонів,” Наукові записки УНДІЗ, 3(47) (2017): 50 – 63. 17. Wolf R., Ellinger F., and Eickhoff R., “On the Maximum Efficiency of Power Amplifiers in OFDM Broadcast Systems with Envelope Following,” Springer- Mobile Lightweight Wireless Systems of the series Lecture Notes of the Institute for Computer Sciences, 45 (2010): 160-170.
18. Qi G., Yao J., Seregelyi J., Paquet S., Bélisle C., Zhang X., Wu K., and Kashyap R., “Phase-Noise Analysis of Optically Generated Millimeter-Wave Signals With External Optical Modulation Techniques,” J. Lightwave Technol, 24 (2006): 4861-4875. 19. “Digital Video Broadcasting (DVB): Framing Structure, Channel Coding and Modulation for Digital Terrestrial Television,” ETSI EN 300 744, V.1.5.1, European Telecommunications Standards Institute, 2004. 20. Yang H., Smulders P.F.M., Herben M.H.A.J., “Channel characteristics and transmission performance for various channel configurations at 60 GHz,” EURASIP J. Wireless Commun. Networking, (2007): 1-15. 21. Andrews J. G., Bai T., Kulkarni M. N., Alkhateeb A., Gupta A., Heath R. W., "Modeling and analyzing millimeter wave cellular systems," IEEE Transactions on Communications, 65(1) (2017): 403-430. 22. Petrov V., Komarov M., Moltchanov D., Jornet J. M. and Koucheryavy Y., “Interference and SINR in Millimeter Wave and Terahertz Communication Systems with Blocking and Directional Antennas,” IEEE Transactions on Wireless Communications, 16 (3) (2017): 1791-1808.

Section
Articles