
ISSN 2786-8362                                             Наукові записки ДУІКТ – 2025. – №2 (8) 
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ 

118 

© Бутко І.М., Голубенко О.І., Коваленко С.М., Маковейчук О.М. 2025 

УДК 519.866  DOI: 10.31673/2786-8362.2025.025360 
 

Бутко І.М., д.т.н.; Голубенко О.І., к.т.н.; 

Коваленко С.М., к.ф.-м.н.; Маковейчук О.М., д.т.н. 

 

ПРОГНОСТИЧНЕ МОДЕЛЮВАННЯ В SMART CITY НА ОСНОВІ 

ARIMA-МОДЕЛЕЙ 

 
Butko I.M., Golubenko O.I., Kovalenko S.M., Makoveichuk O.M. Predictive modeling in Smart 

Sities based on ARIMA models. Accurate time series forecasting is a cornerstone of smart city 

management, enabling informed decision-making across energy systems, transportation networks, 

environmental monitoring, and public safety. This study investigates the application of ARIMA models for 

urban time series prediction, focusing on both standard ARIMA and residual-corrected ARIMA variants. 

Residual correction allows the capture of latent structural patterns and systematic deviations not fully 

addressed by the base ARIMA model, thereby enhancing forecast accuracy. Model performance is 

rigorously evaluated using a comprehensive set of metrics, including Mean Absolute Error (MAE), Root 

Mean Squared Error (RMSE), symmetric Mean Absolute Percentage Error (sMAPE), Mean Absolute 

Percentage Error (MAPE), and Mean Absolute Scaled Error (MASE), complemented by a multi-criteria 

ranking procedure to identify the optimal model configuration. The results demonstrate that residual-

corrected ARIMA consistently outperforms standard ARIMA for short- and medium-term forecasting 

tasks, particularly for variables such as air temperature, which exhibit complex temporal dynamics. The 

findings underscore the practical relevance of ARIMA-based forecasting as a reliable tool for data-driven 

decision support in smart city infrastructures. 

Keywords: time series, forecasting, ARIMA model, ARIMA with residual correction, model 
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Бутко І.М., Голубенко О.І., Коваленко С.М., Маковейчук О.М. Прогнозоване 

моделювання в Smart City на основі ARIMA-моделей. У статті досліджується застосування 

ARIMA-моделей для прогнозування часових рядів. Розглянуто базові моделі ARIMA та їх 

модифікації з корекцією залишків, які дозволяють враховувати додаткові структурні закономірності 

у часових рядах та підвищувати точність прогнозу. Для оцінки ефективності моделей використано 

комплекс метрик точності — MAE, RMSE, sMAPE, MAPE та MASE — а також багатокритеріальне 

ранжування моделей для визначення оптимальної конфігурації. Результати дослідження 

підтверджують доцільність застосування ARIMA з корекцією залишків для коротко- та 

середньострокового прогнозування. Практичне значення роботи полягає у підвищенні точності 

прогнозів та підтримці прийняття рішень в інформаційно-орієнтованому міському середовищі. 

Ключові слова: часові ряди, прогнозування, модель ARIMA, модель ARIMA з залишками, 

критерії вибору моделі 

 

Вступ 

Постановка завдання. Сучасна концепція «розумного міста» (Smart City) ґрунтується на 

інтеграції цифрових технологій, систем штучного інтелекту та аналітики даних у всі аспекти 

міського управління. Основна мета такої інтеграції – підвищення ефективності 

функціонування міської інфраструктури, раціональне використання ресурсів і поліпшення 

якості життя громадян. Кожен із цих процесів характеризується часовими закономірностями, 

трендами та періодичними коливаннями, що робить прогнозування ключовим інструментом у 

прийнятті рішень. 

У системах Smart City часові ряди формуються практично у кожній підсистемі: від 

споживання електроенергії, обсягів транспортування води та кількості пасажирів у 

громадському транспорті – до рівня забруднення повітря, трафіку автомобілів, показників 

шумового навантаження чи запитів до муніципальних сервісів. У цьому контексті 

прогнозування часових рядів посідає центральне місце, оскільки саме воно забезпечує 

можливість передбачати майбутні події та динаміку процесів у міському середовищі на 

основі аналізу історичних даних [1-2]. 

Аналіз останніх досліджень. Прогнозування часових рядів охоплює широкий спектр 

підходів – від класичних статистичних моделей до сучасних методів глибинного навчання. 
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Кожен клас моделей ґрунтується на власній математичній парадигмі, що відображає різні 

уявлення про структуру та закономірності часових даних. 

Однією з базових моделей лінійного прогнозування є авторегресивна інтегрована модель 

ковзного середнього – ARIMA (Autoregressive Integrated Moving Average) [3]. Вона описує три 

основні явища у часових рядах: 

• авторегресія – залежність поточного значення від попередніх спостережень; 

• інтеграція – усунення нестаціонарності ряду шляхом його диференціювання 

(differencing), тобто перетворення до різницево-стаціонарного часового ряду певного порядку, 

надалі цей порядок будемо називати порядком інтеграції;  

• ковзне середнє – залежність від похибок попередніх прогнозів. 

Формально модель ARIMA порядку (p, d, q) описується рівнянням: 

𝜑𝑝(𝐵)(1 − 𝐵)𝑑𝑦𝑡 = 𝜃𝑞(𝐵)𝜀𝑡,                                                      (1) 

де 𝑦𝑡 – спостережене значення часового ряду у момент часу 𝑡; 

𝜑𝑝(𝐵) = 1 − 𝜑1𝐵 − 𝜑2𝐵2 − ⋯ − 𝜑𝑝𝐵𝑝 – авторегресивний поліном порядку 𝑝; 

𝜃𝑞(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞 – поліном порядку 𝑞 для ковзного середнього; 

𝐵 – оператор зсуву назад у на один відлік по часу 𝐵𝑦𝑡 = 𝑦𝑡−1; 

𝑑 – порядок інтеграції; 

𝜀𝑡– випадкова складова (білий шум). 

Компактність структури ARIMA забезпечує її високу ефективність у виявленні лінійних 

часових кореляцій. Схематичне зображення моделі наведено на рис. 1. 

 
Рис. 1. Структурна схема моделі ARIMA (відтворено за [3]) 

 

Розширенням цієї моделі є сезонна модель SARIMA (Seasonal ARIMA) [4], що дає змогу 

враховувати регулярні сезонні коливання. Модель SARIMA порядку (P, D, Q) визначається 

рівнянням: 

Φ𝑃(𝐵𝑆)𝜑𝑝(𝐵)(1 − 𝐵)𝑑(1 − 𝐵𝑆)𝐷𝑦𝑡 = Θ𝑄(𝐵𝑆)𝜃𝑞(𝐵)𝜀𝑡,                            (2) 

де 𝑆 – довжина сезонного циклу (наприклад, 𝑆 = 12 для по-місячних даних із річною 

сезонністю), Φ𝑃(𝐵𝑆) і Θ𝑄(𝐵𝑆) – сезонні поліноми авторегресії порядку 𝑃 та ковзного 

середнього порядку 𝑄 відповідно, а (1 − 𝐵𝑆)𝐷 – оператор сезонного диференціювання порядку 

𝐷. 

Головна перевага SARIMA над ARIMA полягає у здатності явно враховувати 

періодичність. Це критично важливо для часових рядів із регулярними повторюваними 

структурами – наприклад, місячні продажі, квартальні фінансові показники або сезонні 

кліматичні коливання [5, 6]. 

Модель ARIMA є ефективним інструментом для моделювання лінійних залежностей у 

часових рядах. Проте реальні дані часто містять залишкові структурні закономірності, які не 

повністю пояснюються первинною ARIMA. Для підвищення точності прогнозу 

застосовується корекція залишків, яка передбачає повторне моделювання похибок первинного 

прогнозу [4; 7]. 

Нехай 𝑦̂𝑡
base– прогноз, отриманий за базовою моделлю без корекції: 

𝑦̂𝑡
base = ARIMA𝑏𝑎𝑠𝑒(𝑦𝑡−1, 𝑦𝑡−2, …  ; 𝑝, 𝑑, 𝑞, 𝑃, 𝐷, 𝑄, 𝑆),                    (3) 

де 𝑦𝑡 – фактичні значення часового ряду; 

𝑝, 𝑑, 𝑞 – порядок авторегресії, інтеграції та ковзного середнього; 

𝑃, 𝐷, 𝑄 – сезонні параметри; 

𝑆 – довжина сезонного циклу. 

Визначимо тепер залишки як: 

𝜀𝑡̂ = 𝑦𝑡 − 𝑦̂𝑡
base.                                                               (4) 
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У загальному випадку залишки можуть містити власну структуру автокореляції та 
сезонності. Для їх моделювання використовується додаткова ARIMA з порядком, який може 
відрізнятися від базової моделі: 

𝜀𝑡̂ = ARIMAresid(𝜀𝑡̂−1, 𝜀𝑡̂−2, …  ; 𝑝𝑟 , 𝑑𝑟 , 𝑞𝑟 , 𝑃𝑟 , 𝐷𝑟 , 𝑄𝑟) + 𝜂𝑡 ,              (5) 

де 𝑝𝑟 , 𝑑𝑟 , 𝑞𝑟 – порядки авторегресії, інтеграції та ковзного середнього для моделі залишків; 

𝑃𝑟 , 𝐷𝑟 , 𝑄𝑟– сезонні параметри; 𝜂𝑡– новий випадковий шум. 
Цей підхід дозволяє вловлювати додаткові закономірності, які не були враховані базовою 

ARIMA, включаючи локальні коливання та сезонні ефекти. 
Остаточний скоригований прогноз 𝑦̂𝑡

corr формується як сума базового прогнозу та прогнозу 
залишків: 

𝑦̂𝑡
corr = 𝑦̂𝑡

base + 𝜀𝑡̂.                                                       (6) 

Застосування такої моделі є особливо ефективним у системах Smart City, де часові ряди 
характеризуються багаторівневими динамічними процесами – добовими і сезонними 
коливаннями енергоспоживання, змінним транспортним навантаженням, навантаженням на 
міську інфраструктуру та іншими системними впливами. У таких випадках корекція залишків 
дозволяє значно підвищити точність прогнозу та стабільність прийнятих рішень у реальному 
часі [8;9]. 

Метою роботи є практична оцінка ефективності застосування ARIMA-моделей, включно 
з моделями з корекцією залишків, для прогнозування часових рядів на основі реальних даних, 
а також у формулювання та обґрунтування критеріїв вибору оптимальної моделі для 
забезпечення високої точності та надійності прогнозів. 

 

Виклад основного матеріалу дослідження 
Гарним прикладом є прогнозування температури повітря, оскільки воно безпосередньо 

впливає на міське планування, управління енергоспоживанням та забезпечення громадської 
безпеки. Прогнози температури сприяють підтримці екологічного моніторингу, регулюванню 
транспортних потоків та реалізації заходів, пов’язаних із охороною здоров’я, що робить їх 
ключовим елементом інформаційно-орієнтованої міської інфраструктури [10]. 

У зв’язку з цим для дослідження моделей ARIMA було обрано завдання прогнозування 
температури повітря у м. Київ, Україна. Враховуючи певні обмеження щодо доступу до 
актуальної інформації через її чутливий характер, дослідження було проведено на спрощеній 
задачі з використанням даних за період 2012–2017 рр., частини набору даних Kaggle, що 
охоплює період 1881–2017 [11]. У наданому наборі даних інформація фіксувалася щодня; 
проте для цілей даного дослідження достатньо розглядати середні тижневі значення 
температури. Таким чином, сформовано набір даних із 304 записів середніх місячних 
температур для Києва за період від 1 січня 2012 року до 22 жовтня 2017 року. Для подальшого 
аналізу набір даних було розділено на дві частини: навчальну вибірку з 209 записів (від 1 січня 
2012 року до 27 грудня 2015 року) та тестову вибірку з 95 записів (від 3 січня 2016 року до 22 
жовтня 2017 року). Графік вихідних даних зображено на рис. 2. 

 
Рис. 2. Вихідні дані, що використовувалися для дослідження 
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Для оцінки якості даних було побудовано гістограму їх розподілу (рис. 3). Це дає змогу 

візуально проаналізувати форму розподілу, виявити можливу асиметрію, наявність викидів 

або сезонних аномалій [7; 12]. 

 
Рис. 3. Гістограма розподілу вихідних даних 

 

Гістограма також дозволяє перевірити наближеність даних до нормального розподілу. У 

нашому випадку спостерігається бімодальний характер розподілу, що свідчить про виражену 

сезонність температурних коливань і наявність двох домінантних режимів у динаміці ряду. 

Для оцінки точності прогнозів у даному дослідженні застосовується комплекс метрик, що 

враховує як абсолютні, так і відносні відхилення прогнозу 𝑦̂𝑡 від фактичних значень 𝑦𝑡:  

MAE (Mean Absolute Error) визначає середнє абсолютне відхилення: 

MAE =
1

𝑛
∑ ∣ 𝑦𝑡 − 𝑦̂𝑡 ∣

𝑛

𝑡=1

,                                              (7) 

RMSE (Root Mean Squared Error) підкреслює вплив великих похибок: 

RMSE = √
1

𝑛
∑(𝑦𝑡 − 𝑦̂𝑡)2

𝑛

𝑡=1

,                                          (8) 

sMAPE (Symmetric Mean Absolute Percentage Error) відображає симетричну відносну 

похибку: 

sMAPE = 100 ⋅
1

𝑛
∑

2  ∣ 𝑦𝑡 − 𝑦̂𝑡 ∣

∣ 𝑦𝑡 ∣ +∣ 𝑦̂𝑡 ∣

𝑛

𝑡=1

,                                    (9) 

MAPE (Mean Absolute Percentage Error) дає середнє відносне відхилення у відсотках, із 

захистом від ділення на нуль: 

MAPE = 100 ⋅
1

𝑛
∑

∣ 𝑦𝑡 − 𝑦̂𝑡 ∣

∣ 𝑦𝑡 ∣ +1

𝑛

𝑡=1

,                                       (10) 

Нарешті, MASE (Mean Absolute Scaled Error) дозволяє порівнювати точність прогнозу з 

наївним методом, масштабуючи похибку відносно середньої різниці послідовних 

спостережень: 

MASE =
MAE

1
𝑛 − 1

∑ ∣ 𝑦𝑡 − 𝑦𝑡−1 ∣𝑛
𝑡=2

.                              (11) 

У процесі оцінювання моделей ARIMA для прогнозування температури повітря 

використано багатокритеріальний підхід до вибору найкращої моделі. Для кожної 
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конфігурації параметрів (𝑝, 𝑑, 𝑞) обчислювались основні метрики точності прогнозу – MAE, 

RMSE, sMAPE, MAPE та MASE. 

Оскільки жодна окрема метрика не відображає повною мірою якості моделі, було 

застосовано метод ранжування. Для кожної метрики визначався ранг моделі: менше значення 

метрики відповідало кращому рангу. Далі ранги по всіх метриках сумувалися для кожної 

моделі, утворюючи інтегральний показник якості [13; 14]. 

Нехай 𝑅𝑖,𝑗 – ранг 𝑖-ї моделі за 𝑗-ю метрикою (𝑗 = 1,2, … , 𝑚), де 𝑚 – кількість обраних 

метрик. Тоді сумарний ранг моделі визначається як 

𝑆𝑖 = ∑ 𝑅𝑖,𝑗

𝑚

𝑗=1

,                                                         (12) 

а найкраща модель вибирається за мінімальним сумарним рангом: 
𝑖best = arg min 

𝑖
𝑆𝑖.                                                (13) 

Для підбору оптимальної конфігурації ARIMA у дослідженні було проведено тестування 

моделей у такому діапазоні параметрів: 

• p (порядок авторегресії, AR) від 0 до 2, 

• q (порядок ковзного середнього, MA) від 0 до 1, 

• d (порядок інтеграції) від 0 до 2. 

Загалом формувалися всі комбінації параметрів (𝑝, 𝑑, 𝑞)у визначеному діапазоні, за 

винятком трійки (0,0,0), оскільки вона не задає ARIMA-модель. Для кожної конфігурації 

ARIMA обчислювалися метрики точності MAE, RMSE, sMAPE, MAPE та MASE за 

формулами (7)–(11). Крім того, відповідно до виразів (12)–(13), визначався сумарний ранг 

моделі, який дозволяє оцінити її стабільність та ефективність за всіма критеріями одночасно. 

Отримані результати узагальнено у Табл. 1. 

Зауважимо, що частина конфігурацій моделей ARIMA не змогла бути оцінена через 

обмеження щодо включення трендових компонентів у моделі з інтеграцією (d > 0) або 

сезонною інтеграцією (D > 0). Зокрема, у моделях, де порядок інтеграції перевищує нуль, 

трендові терми нижчого порядку не можуть бути використані, оскільки вони автоматично 

усуваються операцією різниці. Через це деякі моделі, наприклад ARIMA(0,1,0), ARIMA(0,1,1) 

та ARIMA(0,1,2), не були обчислені. 

Таблиця 1 

Порівняння моделей ARIMA за метриками точності та сумарним рангом 

index MAE RMSE sMAPE MAPE MASE Total Rank (𝑺𝒊) 

ARIMA(0, 0, 1) 2,97 3,75 55,43 200,76 0,97 5 

ARIMA(0, 0, 2) 3,05 3,91 56,48 222,41 0,99 10 

ARIMA(1, 0, 2) 4,66 5,80 67,45 439,34 1,52 15 

ARIMA(2, 0, 2) 4,76 5,90 67,97 446,80 1,55 20 

ARIMA(1, 0, 1) 5,07 6,22 69,59 472,34 1,65 25 

ARIMA(2, 0, 0) 5,11 6,27 69,74 481,06 1,66 30 

ARIMA(1, 0, 0) 5,17 6,34 70,03 487,10 1,68 35 

ARIMA(2, 0, 1) 5,34 6,53 70,86 504,35 1,74 40 

 

Для побудови базового прогнозу моделі ARIMA використовувалася конфігурація 

seasonal_order = (1,0,1,52) та trend = 'ct', що дало змогу врахувати сезонні коливання з 

періодом 52 тижні і трендову складову даних. Найкращою за результатами 

багатокритеріальної оцінки виявилася модель ARIMA(0,0,1) (рис. 4). 

На рис. 5 подано графік залишків базового прогнозу для цієї моделі, який відображає 

відхилення прогнозованих значень від фактичних. Для зазначеної конфігурації отримано такі 

значення метрик точності: MAE = 2.973, RMSE = 3.751, sMAPE = 55.43 %, MAPE = 200.76 

%, MASE = 0.968. Сума рангів моделі становила 5.0, що свідчить про стабільно добрі 

результати за всіма критеріями. 
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Рис. 4. Базовий прогноз температури повітря за найкращою моделлю ARIMA(0,0,1) 

 

 
Рис. 5. Залишки базового прогнозу ARIMA(0,0,1) 

 

Для оцінки якості побудованої моделі та перевірки адекватності прогнозу було виконано 

аналіз залишків. На рис. 6 наведено гістограму розподілу залишків, яка дозволяє візуально 

оцінити їхню форму, симетрію та наявність відхилень від нормального розподілу. Як видно, 

залишки мають майже симетричний розподіл навколо нуля, що свідчить про відсутність 

систематичних похибок у моделі. 

 
Рис. 6. Гістограма розподілу залишків 
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Рис. 7. Автокореляційна функція залишків 

 

На рис. 7 подано графік автокореляційної функції (ACF) залишків. Відсутність 

статистично значущих автокореляцій за межами довірчого інтервалу підтверджує, що 

залишки можна вважати випадковими і неструктурованими, тобто модель ARIMA(0,0,1) 

адекватно описує динаміку даних. 

На рис. 8 представлено уточнений прогноз, отриманий після моделювання та корекції 

залишків базової ARIMA-моделі. Додавання прогнозу залишків дозволяє врахувати додаткові 

залежності та локальні коливання у даних, що підвищує точність прогнозу та зменшує 

систематичні відхилення від фактичних значень. Графік демонструє покращену відповідність 

прогнозу реальним спостереженням порівняно з базовим прогнозом (рис. 4). 

 
Рис. 8. Прогноз після корекції залишків базової ARIMA-моделі 

 

Моделювання виконувалося в середовищі Google Colab [15] із використанням мови Python 

та стандартних бібліотек для роботи з часовими рядами та статистичним моделюванням, таких 

як pandas [16], numpy [17], statsmodels [18] та seaborn [19]. 

 

Висновки 

У роботі досліджено застосування ARIMA-моделей для прогнозування середньомісячної 

температури повітря у м. Київ. Показано, що базові ARIMA-моделі дозволяють моделювати 
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сезонні коливання та трендову складову, тоді як корекція залишків за допомогою додаткової 

ARIMA-моделі підвищує точність прогнозу та зменшує систематичні похибки. 

Найкращою виявилася модель ARIMA(0,0,1) із сезонним порядком (1,0,1,52) та 

трендовою складовою, яка продемонструвала стабільно добрі результати за усіма метриками 

точності та сумарним ранжуванням. 

Рекомендації для подальших досліджень: 

1. Розширити аналіз на інші метеорологічні параметри та часові ряди Smart City 

(наприклад, трафік, енергоспоживання, рівень забруднення повітря). 

2. Порівняти ефективність ARIMA з іншими підходами прогнозування, зокрема LSTM та 

Prophet, для виявлення більш складних залежностей. 

3. Розглянути використання багатофакторних моделей та інтеграцію зовнішніх даних 

(погодні умови, свята, соціальні події) для підвищення точності прогнозів. 
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