Modern Information Security
https://journals.dut.edu.ua/index.php/dataprotect
<p><img src="/public/site/images/0675046012/Обкладинка_2024_№4_25.jpg"></p> <p><strong>Topics</strong>: information security, information technology<br> <strong>Founders</strong>: State University of Telecommunications<br> <strong>Address</strong>: st. Solomianska, 7, Kyiv, 03110, Ukraine<br> <strong>Phones</strong>: +380 (44) 249 25 35<br> <strong>Email</strong>: <a href="mailto:szi.journal@gmail.com">szi.journal@gmail.com<br></a><strong>Foundation year</strong>: 2010<br> <strong>Certificate of state registration</strong>: Series KV № 20254-10654 PR from June 10, 2014<br> <strong>Registration at the Ministry of Education and Science of Ukraine</strong>: Order No. 1021 dated October 7, 2015 (Annex 11, p. 110). The journal is included to the List of scientific professional editions of Ukraine, in which the results of dissertations for the scientific degrees of a Doctor and a Philosophy Doctor in the field <strong>of technical sciences </strong>may be published.</p>uk-UAModern Information SecurityTitle
https://journals.dut.edu.ua/index.php/dataprotect/article/view/3297
<p>Title</p>admin admin
##submission.copyrightStatement##
2025-10-182025-10-18313Content
https://journals.dut.edu.ua/index.php/dataprotect/article/view/3298
<p>Content</p>admin admin
##submission.copyrightStatement##
2025-10-182025-10-18347MODELING THE RESILIENCE OF ELECTRONIC COMMUNICATIONS TO HYBRID CYBERATTACKS: APPROACHES AND SCENARIO ANALYSIS OF INFRASTRUCTURE RESILIENCE
https://journals.dut.edu.ua/index.php/dataprotect/article/view/3299
<p>The article explores approaches to modeling the resilience of electronic communications to hybrid cyberattacks, which<br>pose a growing threat to critical information infrastructure in the context of modern cyber-hybrid warfare. The main attention<br>is paid to the use of scenario analysis and simulation modeling as a means of studying the resilience of telecommunication<br>systems to combined attacks that combine technical (DDoS, routing attack, traffic interception) and information-psychological<br>(phishing, manipulative influence) components. A methodology for building hybrid scenarios has been developed and an<br>experimental environment has been created using OMNeT++, Scapy (Python) and NetEm for testing critical operating<br>conditions. As part of the study, several typical attacks were simulated with the fixation of quality of service (QoS), recovery<br>time (RTO) and structural network stability metrics. It was found that the combination of infrastructural and cognitive impact<br>can lead to a degradation of functionality up to 50% and a significant increase in recovery time, especially in the case of the<br>absence of backup channels and network segmentation. The results of the study can be used to design telecommunications<br>architectures with an increased level of resilience, build digital twins for preventive risk assessment, as well as form a national<br>regulatory framework in the field of ensuring cyber resilience of critical infrastructure.<br><strong>Keywords</strong>: hybrid threats, electronic communications, attack scenarios, resilience modeling, cyber infrastructure,<br>network resilience, simulation.</p> <p><strong>References</strong><br>1. Threat Landscape for Telecommunications [Електронний ресурс] / European Union Agency for<br>Cybersecurity (ENISA). 2022. https://doi.org/10.2824/095251 (enisa.europa.eu).<br>2. Systems Security Engineering. Considerations for a Multidisciplinary Approach in the Engineering of<br>Trustworthy Secure Systems (SP 800-160) [Електронний ресурс] / National Institute of Standards and<br>Technology. 2018. https://doi.org/10.6028/NIST.SP.800-160v1.<br>3. Kott A., & Arnold C. (2022). Cognitive dimensions of cyber defense. Journal of Cybersecurity, 8(1). https://<br>doi.org/10.1093/cybsec/tyac009.<br>4. Chen T. M., & Robert J. M. (2019). Modeling cyber resilience. Computers & Security, 87, 101568. https://<br>doi.org/ 10.1016/j.cose.2019.101568.<br>5. Zhang J. (2020). Resilience in critical infrastructure. IEEE Access, 8, 179 762 - 179 775. https://doi.<br>org/10.1109/ACCESS.2020.3027315.<br>6. Zhu Q. (2021). Network games for cyber defense. ACM Computing Surveys, 54(8), Art. 165. https:/<br>/doi.org/10.1145/3417981.<br>7. Gill J., Sriram K., & Bush R. (2022). Routing attacks in BGP: A survey. IEEE Communications<br>Surveys & Tutorials, 24(4), 2454–2493. https://doi.org/10.1109/COMST.2022.3141096.<br>8. Liu H., Wang X., & Chen Y. (2023). Secure routing in software-defined networks. IEEE Transactions on<br>Network and Service Management, 20(2), 1234-1248. https://doi.org/10.1109/TNSM.2023.3267892.<br>9. Li Y., Kumar A., & Wang G. (2020). Quality-of-service modeling for cyber-physical systems under stress.<br>Future Internet, 12(8), 135. https://doi.org/10.3390/fi12080135.<br>10. Sterbenz J. P. G. (2020). Design principles for resilient networks. Computer Communications, 155, 1–<br>17. https://doi.org/10.1016/j.comcom.2020.02.001.<br>11. Al-Sada B., Sadighian A., & Oligeri G. (2024). MITRE ATT&CK: State of the art and way forward. ACM<br>Computing Surveys, 57(2), Art. 35. https://doi.org/10.1145/3687300 (dl.acm.org).<br>12. Resilience for Compounding and Cascading Events [Електронний ресурс] / National Academies of Sciences,<br>Engineering, and Medicine. – Washington, DC: NASEM, 2022. – https://doi.org/10.17226/26659 (nhess.copernicus.org).<br>13. Enhancing the Resilience of Health Care and Public Health Critical Infrastructure: Proceedings of a<br>Workshop – in Brief [Електронний ресурс] / National Academies of Sciences, Engineering, and Medicine. –<br> Washington, DC: NASEM, 2025. – https://doi.org/10.17226/29081.<br>14. Enhancing the Resilience of the Nation’s Electricity System [Електронний ресурс] / National Academies of<br>Sciences, Engineering, and Medicine. Washington, DC: NASEM, 2017. https: // doi.org / 10.17226 /24836 (nap.<br>nationalacademies.org).<br>15. Sterbenz J. P. G., Hutchison D., Çetinkaya E. K., Jabbar A., Rohrer J. P., Schöller M., & Smith P. (2014). Resili<br>ence and survivability in communication networks: Strategies, principles, and survey of disciplines. Computer<br>Networks, 79, 112-136. https://doi.org/10.1016/j.comnet.2014.10.006.<br>16. Buldyrev S. V., Parshani R., Paul G., Stanley H. E., & Havlin S. (2010). Catastrophic cascade of failures in<br>interdependent networks. Nature, 464(7291), 1025-1028. https://doi.org/10.1038/nature08932.<br>17. Newman M. E. J. (2010). Networks: An introduction. Oxford University Press. https://doi.org/10.1093<br>/acprof:oso/9780199206650.001.0001.<br>18. Yang Z., Barroca B., Weppe A., et al. (2023). Indicator-based resilience assessment for critical infrastructures –<br> A review. Safety Science, 160, 106049. https://doi.org/10.1016/j.ssci.2022.106049 (Scribd).<br>19. Holme P., & Saramäki J. (2012). Temporal networks. Physics Reports, 519(3), 97-125. https: // doi.org /<br>10.1016/ j.physrep. 2012.03.001.<br>20. Cyber Deterrence and Hybrid Conflict [Електронний ресурс] / RAND Corporation. 2021. https: //doi.org/<br>10.7249/RR2861.<br>21. Linkov I., Bridges T., Creutzig F., Decker E., Fox-Lent C., Kröger W., et al. (2014). Changing the resilience<br>paradigm. Nature Climate Change, 4(6), 407–409. https://doi.org/10.1038/nclimate2223.<br>22. Gamage D., Abeywardena K., Jayakody S., & Gunathillake J. (2020). Security and reliability in Internet of<br>Things: A survey. IEEE Communications Surveys & Tutorials, 22(3), 1168-1192. https://doi. org/10.1109/ COMST.<br>2020.2998958.<br>23. Cárdenas A. A., Amin S., & Sastry S. (2016). Research challenges for the security of control systems.<br>Computers & Security, 61, 9–19. https://doi.org/10.1016/j.cose.2016.04.002.<br>24. Hollnagel E., Woods D. D., & Leveson N. (2019). Resilience engineering: Concepts and precepts (2nd ed.).<br>CRC Press. https://doi.org/10.1201/9781315600646.<br>25. Rinaldi S. M., Peerenboom J. P., & Kelly T. K. (2001). Identifying, understanding, and analyzing critical<br>infrastructure interdependencies. IEEE Control Systems Magazine, 21(6), 11–25. https://doi.org/10.1109/37.969131.<br>26. Ganin A. A., Pruyt E., Keisler J. M., & Linkov I. (2017). Resilience and efficiency in transportation networks.<br>Science Advances, 3(12), e1701079. https://doi.org/10.1126/sciadv.1701079.<br>27. Oughton E. J., Frias Z., van der Gaast S., & Nguyen H. Q. (2021). Evaluating 5G deployment strategies for<br>smart manufacturing. Computers in Industry, 127, 103471. https://doi.org/10.1016/j.compind.2021.103471.<br>28. Laprie J.-C., Kanoun K., & Kaâniche M. (2007). Modelling interdependencies between the electricity and<br>information infrastructures. Safety Science, 45(4), 457-473. https://doi.org/10.1016/j.ssci.2006.09.007.<br>29. Kshetri N., & Voas J. (2022). Cybersecurity for energy infrastructure: Trends and future directions. Renewable<br>and Sustainable Energy Reviews, 153, 111672. https://doi.org/10.1016/j.rser.2021.111672.<br>30. Manzano-Agugliaro F., García-Cruz A., Zapata-Sierra A., & Montoya F. G. (2020). A global review of<br>cybersecurity in agricultural environments. Computers and Electronics in Agriculture, 173, 105126. https:// doi.org/<br>10.1016/j.compag.2019.105126.<br>31. Paul S., Shukla A., Gupta V., & Jain S. (2019). Risk analysis for SCADA communication to enhance the<br>resilience of smart grids. IEEE Access, 7, 46768–46782. https://doi.org/10.1109/ACCESS.2019.2910062.<br>32. Bureš M., Černý M., & Králík K. (2022). Simulation of cyber‑physical attacks on water distribution systems.<br>Computers & Security, 116, 103044. https://doi.org/10.1016/j.cose.2022.103044.<br>33. Ganin A. A., & Linkov I. (2016). Operational resilience: Concepts, design, and analysis. Scientific<br>Reports, 6, 19540. https://doi.org/10.1038/srep19540.<br>34. Sterbenz J. P. G., Hutchison D., Çetinkaya E. K., Jabbar A., Rohrer J. P., Schöller M., & Smith P. (2013). <br>Evaluation of network resilience and survivability: Strategies, principles, and metrics. Computer Networks, 57(8), 1637-<br>1665. https://doi.org/10.1016/j.comnet.2012.10.019.</p>Бушков В. Г. (Bushkov V.G.)
##submission.copyrightStatement##
2025-10-222025-10-223819HYBRID METHOD FOR DETECTING MALICIOUS ACTIVITY BASED ON STACKING ENSEMBLE OF CLASSIFIERS
https://journals.dut.edu.ua/index.php/dataprotect/article/view/3300
<p>The article presents a hybrid method for detecting malicious activity in information systems of organizations, developed<br>on the basis of an ensemble approach using stacking. The proposed architecture combines classical machine learning algorithms<br>(SVM, Random Forest, kNN) and modern high-performance boosting models (XGBoost, LightGBM, CatBoost), while the role<br>of meta-classifiers is performed by logistic regression, XGBoost, Gradient Boosting and Random Forest. This approach provides<br>an integration of the strengths of different methods, which allows to significantly increase the classification accuracy, noise<br>resistance and generalization ability of the system. Particular attention is paid to data preprocessing, which includes the removal<br>of irrelevant features, normalization of numerical characteristics, balancing class disparity using the SMOTE algorithm,<br>dimensionality reduction using PCA and temporal feature engineering. The use of these methods allowed to reduce the risk of<br>overfitting, accelerate calculations and preserve the informativeness of key traffic characteristics. To select the optimal models,<br>two methods were used: building a Pareto front and heuristic filtering by the average values of the metrics, which made it<br>possible to ensure a balanced ratio between accuracy, F1-measure and speed. Experimental verification of the proposed approach<br>was carried out on one of the most representative datasets in the field of cybersecurity - CSE-CIC-IDS2018. The results obtained<br>showed that the accuracy was achieved at the level of 98.07%, F1-measure 96.57% and average prediction time 7.16 ms, which<br>meets modern requirements for IDSs capable of operating under high load conditions in real time. The proposed system<br>demonstrated better efficiency compared to single models, which confirms the feasibility of using hybrid ensemble methods in<br>cyber security tasks.<br><strong>Keywords</strong>: threats, intrusion detection, hybrid classification, stacking, cybersecurity, cyber defense, machine learning,<br>models, malicious activity.</p> <p><strong>References</strong><br>1. Гайдур,Г. І., Гахов,С. О., Гамза,Д. Є.(2024). Модель виявлення шкідливої активності в інформаційній<br>системі організації на основі гібридної класифікації. Сучасний захист інформації, 4(60), 30-38. DOI:<br>10.31673/2409-7292.2024.040003.<br>2. IDS 2018 | Datasets | Research | Canadian Institute for Cybersecurity | UNB. (2023, December 21). Retrieved<br>from https://www.unb.ca/cic/datasets/ids-2018.html.<br>3. Kaur, G., & Saini, H. S. (2023). Stacking ensemble learning for network intrusion detection systems.<br>International Journal of Computer Applications, 184(12), 15–23. DOI: 10.29130/dubited.737211<br>4. Cisco. (2023). Annual Cybersecurity Report. Cisco Systems. https://www.cisco.com/c/m/en_us/products/<br>security/cybersecurity-reports/cybersecurity-readiness-index.html.<br>5. Савченко В. А., Смолєв Є. С., Гамза Д. Є. Методика виявлення аномалій взаємодії користувачів з<br>інформаційними ресурсами організації. Сучасний захист інформації. № 4 (2023). С. 6-12 DOI: 10.31673/2409-<br>7292.2023.030101.<br>6. ENISA. (2023). ENISA Threat Landscape Report 2023. European Union Agency for Cybersecurity.<br>https://www.enisa.europa.eu/publications/enisa-threat-landscape-2023.<br>7. Murat U., Emine U., Mürsel O.(2021). A Stacking Ensemble Learning Approach for Intrusion Detection System.<br>Düzce University Journal of Science & Technology, 184(12), 15–23. DOI:10.29130/dubited.737211.<br>8. Seni, G., & Elder, J. F. (2010). Ensemble methods in data mining: Improving accuracy through combining DOI:<br>10.2200/S00240ED1V01Y200912DMK002.<br>9. Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression. Wiley. DOI:<br>10.1002/9781118548387.<br>10. Ahmed, M., Mahmood, A. N., & Hu, J. (2016). A survey of network anomaly detection techniques. Journal of<br>Network and Computer Applications, 60, 19–31 DOI: 10.1016/j.jnca.2015.11.016<br>11. Pinto, A.; Herrera, L.C.; Donoso, Y.; Gutierrez, J.A. Survey on Intrusion Detection Systems Based on Machine<br>Learning Techniques for the Protection of Critical Infrastructure. Sensors 2023, 23, 2415, DOI: 10.3390/s23052415.</p>Гайдур Г. І. (Haidur G.I.)Гамза Д. Є. (Hamza D.E.)
##submission.copyrightStatement##
2025-10-222025-10-2232026EXPERIMENTAL RESEARCH, SOFTWARE IMPLEMENTATION AND EVALUATION OF THE EFFECTIVENESS OF THE APPLICATION OF THE SOFTWARE PROTECTION METHOD BASED ON HYBRID ANALYSIS
https://journals.dut.edu.ua/index.php/dataprotect/article/view/3301
<p>The growth of cyber threats, especially in the context of the active spread of malicious software, leads to serious<br>consequences, including unauthorized access to confidential systems, mass theft or loss of critical data, as well as their<br>encryption for the purpose of extortion. These events not only cause significant economic damage, but are also classified as<br>criminal offenses in many jurisdictions, which emphasizes their legal and social significance. In this context, software protection<br>has acquired strategic importance, especially at the stages of its development, when it is possible to proactively prevent potential<br>vulnerabilities. Modern methods of code analysis, in particular static and dynamic, demonstrate significant limitations in the<br>fight against polymorphic and metamorphic malware. Static analysis, based on signatures, is unable to effectively detect new<br>forms of threats due to the lag of virus databases and a high rate of false positives. Dynamic analysis, although it allows to<br>capture behavioral signs of malicious code, is resource-intensive, slows down the testing process and is sensitive to antiemulation techniques that hide the true nature of the threat. To overcome these problems, a hybrid code analysis method is<br>proposed, which synergistically combines the advantages of static, dynamic and semantic approaches. This approach provides<br>comprehensive threat detection based on simultaneous analysis of the code structure and its behavior during execution, which<br>significantly increases the accuracy of detection, reduces the number of false positives and provides a wider coverage of potential<br>risks. Of particular importance is its application for early detection of threats in widely used open-source libraries, where supply<br>chain risks are the highest. The implementation of hybrid analysis provides a significant increase in the overall level of software<br>security, optimization of testing costs, reduction of verification time and increased confidence in the results obtained. This<br>direction is especially relevant for large-scale projects with microservice architecture and intensive use of open-source components, where the need for reliable protection against evolving cyber threats is critically important. Thus, the development<br>and practical implementation of hybrid code analysis is of scientific and applied value in ensuring cyber resilience of modern<br>and promising information systems.<br><strong>Keywords</strong>: malware, software protection, static code analysis, dynamic code analysis, hybrid code analysis, security<br>vulnerabilities, malicious patterns, polymorphic viruses, code security.</p> <p><strong>References</strong><br>1. Захисний комплекс Microsoft / Що таке шкідливе програмне забезпечення? https://www.microsoft.<br>com/uk-ua/security/business/security-101/what-is-malware.<br>2. Python Type Checking. URL: https://testdriven.io/blog/python-typechecking/ (дата звернення 16.04.2024).<br>3. Delmas, D. (2022). Static analysis of program portability by abstract interpretation (Doctoral dissertation).<br>Sorbonne Université.<br>4. Generating and using a Callgraph, in Python. URL: https://cerfacs.fr/coop/pycallgraph (дата звернення<br>16.04.2024).<br>5. Data Flow Analysis. URL: https://www.codingninjas.com/studio/library/data-flow-analysis (дата звернення<br>16.04.2024).<br>6. Python Control Flow Statements and Loops. URL: https://pynative.com/python-control-flow-statements/ (дата<br>звернення 16.04.2024).<br>7. Akhtar, M. S., & Feng, T. (2022). Malware analysis and detection using machine learning algorithms.<br>Symmetry, 14(11), 2304. URL: https://doi.org/10.3390/sym14112304 (дата звернення 16.04.2024).<br>8. Monat, R., Ouadjaout, A., Miné, A. (2021). A Multilanguage Static Analysis of Python Programs with Native<br>C Extensions. In: Drăgoi, C., Mukherjee, S., Namjoshi, K. Static Analysis. SAS 2021. Lecture Notes in Computer<br>Science(), vol 12913. Springer, Cham. URL: https://doi.org/10.1007/978-3-030-88806-0_16.<br>9. Infographic Open source linters, tools for code analysis 2021. URL: https://www.promyze.com/open-sourcelinters-2021/ (дата звернення 16.04.2024).<br>10. Vassallo, C., Panichella, S., Palomba, F., et al. (2020). How developers engage with static analysis tools in<br>different contexts. Empirical Software Engineering, 25, 1419-1457.<br>11. B. Chess and G. McGraw, “Static analysis for security,” in IEEE Security & Privacy, vol. 2, no. 6, pp. 76-79,<br>Nov.-Dec. 2004, doi: 10.1109/MSP.2004.111.<br>12. Лаптєв, О. А., Колесник, В. В., Ровда, В. В., & Половінкін, М. І. Метод підвищення захисту особистих<br>даних за рахунок синтезу резильєнтних віртуальних спільнот. 2024. Сучасний захист інформації. 4(60). С. 141-<br>146. https://doi.org/10.31673/2409-7292.2024.040015.<br>13. Лаптєв О.А., Марченко В.В. Застосування завад для захисту інформації від витоку радіоканалом.<br>Сучасний захист інформації. 2025. №1. С.89-97. https://doi.org/10.31673/2409-7292.2025.013057.<br>14. Дробик О. В., Лаптєв О. А., Пархоменко І. І., Богуславська О. В., Пепа Ю. В., Пономаренко В. В.<br>Розпізнавання радіосигналів на основі апроксимації спектральної функції у базисі передатних функцій<br>резонансних ланок другого порядку. Сучасний захист інформації. 2024. №2. С.13-23. https://doi.org/<br>10.31673/2409-7292.2024.020002.<br>15. Аль-Дальваш А., Петченко М.В., Лаптєв О.А. Метод детектування цифрових радіосигналів за<br>допомогою диференціального перетворення. Сучасний захист інформації. 2025. №1. С.285-291. https://doi.org/<br>10.31673/2409-7292.2025.014329.</p>Гапон А. О. (Gapon A.O.)
##submission.copyrightStatement##
2025-10-222025-10-2232736ANALYSIS OF PREREQUISITES FOR ENSURING RESOURCE CONSENSUS WHEN PERFORMING STEGANOGRAPHIC DATA INSERTION PROCEDURES
https://journals.dut.edu.ua/index.php/dataprotect/article/view/3302
<p>In the conditions of sustainable growth in the complexity and multi-vector nature of modern cyber threats, digital<br>steganography continues to play an important role in ensuring data confidentiality [1-4] in information systems (IS) that<br>operate in conditions of resource limitations. The relevance of this direction emphasizes the need to create energy-efficient<br>steganographic algorithms that combine content resistance to hacking and low computational complexity. Experiments<br>confirmed the assumption that the procedure of preliminary content smoothing improves the starting conditions for the<br>formation of series of basic blocks (BB) of source images (in this case, content), minimizing the number of procedures at<br>the stage of their encoding with conversion. The introduction of these procedures reduces the consequences of fluctuation<br>«noise» in low-information areas of images and improves the computational complexity indicator of the processing<br>algorithm. Following the test trials results, preliminary assessments of their performance were obtained: - in terms of<br>execution time, PSNR indicator, and the number of BBs formed. The ability to flexibly configure preprocessing<br>parameters [1,5] allows the smoothing process to be adapted to different types of data (statistical properties of content),<br>ensuring a controlled level of visual distortion in the conditions of existing resource limitations of the hardware platforms<br>used. In practical terms, such consequences are extremely useful, especially in conditions of multitasking and/or a scarcity<br>of residual battery capacity in gadgets. This ensures high flexibility and efficiency of the steganography process, even in<br>the conditions of limited resources of the base device and/or system. The modeling performed allows to speak about good<br>prospects for further implementation of the considered data processing mechanisms into the structure of specialized<br>steganographic algorithms included in the group of mobile applications. The results obtained contribute to the further<br>improvement of the concept of low-resource steganography and form perspective directions for further research.<br>Keywords: steganography, run-lengths encoding, images, basic block, encapsulation, computational complexity;<br>resource consensus.</p> <p>References<br>1. Конахович, Г., Прогонов, Д., & Пузиренко, О. (2018). Комп’ютерна стеганографічна обробка й аналіз<br>мультимедійних даних : підручник. Київ: Центр навчальної літератури.<br>2. Fridrich, J. (2009). Steganography in Digital Media: Principles, Algorithms, and Applications. Cambridge:<br>Cambridge University Press.<br>3. Yahya, A. (2019). Steganography techniques for digital images. Springer International Publishing.<br>4. Hassaballah, M. (2020). Digital Media Steganography: Principles, Algorithms, and Advances. Academic Press.<br>5. Гончаров, М. О., & Малахов, С. В. (2021, 21–23 квітня). Моделювання процедур підготовки даних<br>стеганоалгоритма з багаторівневим мультиплексуванням контенту. Комп’ютерне моделювання в наукоємних<br>технологіях (КНМТ-2021): матеріали 7-ї міжнар. наук.-техн. конф. Харків: ХНУ ім. В. Н. Каразіна, 118–122. URL:<br>http://surl.li/axsna.<br>6. Honcharov, M., & Malakhov, S. (2024). MODELING ATTEMPTS OF UNAUTHORIZED EXTRACTION OF<br>STEGANOCONTENT UNDER DIFFERENT COMBINATIONS OF DATA KEY-EXTRACTOR. Collection of<br>Scientific Papers «ΛΌГOΣ», (March 1, 2024; Paris, France), 234-245. DOI: 10.36074/logos-01.03.2024.053.<br>7. Shih, F. Y. (2020). Digital watermarking and steganography. Boca Raton: CRC Press.<br>8. Fuad, M., & Ernawan, F. (2020). Video steganography based on DCT psychovisual and object motion. Bulletin<br>of Electrical Engineering and Informatics, 9(3), 1015–1023. DOI: 10.11591/eei.v9i3.1859<br>9. Гончаров, Н., Лесная, Ю., & Малахов, С. (2022). Адаптация принципа кодирования длин серий для<br>противодействия попыткам неавторизованной экстракции стеганоконтента. Grail of Science, (17), 241-247. DOI:<br>10.36074/grail-of-science.22.07.2022.042.<br>10. Honcharov, M., & Malakhov, S. (2023). Adaptive modification of the output array of basic blocks series as а<br>mechanism to counteract unauthorized extraction of the staganocontent. Science and technology today, 8(22), 336-352.<br>DOI:10.52058/2786-6025-2023-8(22)-336-352.<br>11. Малахов, С., Колованова, Є., & Гончаров, М. (2023). ОСОБЛИВОСТІ НЕСАНКЦІОНОВАНОЇ<br>ЕКСТРАКЦІЇ СТЕГАНОКОНТЕНТУ ПРИ ЗМІНАХ ПРОСТОРОВОГО ПОЗИЦІЮВАННЯ ОПОРНИХ БЛОКІВ<br>КОНТЕНТУ. Collection of Scientific Papers «ΛΌΓOΣ», (May 26, 2023; Boston, USA), 152–157. DOI: 10.36074/logos26.05.2023.041<br>12. Pratt, W. K. (1978). Digital Image Processing. John Wiley & Sons.<br>13. Honcharov, M., Pavlova, L., & Lesnaya, Y. (2022). Modeling steganocontent extraction attempts with different<br>lengths stack sampling series of images blocks. Computer Science and Cybersecurity, (2), 22-27. DOI: 10.26565/2519-<br>2310-2022-2-02</p>Honcharov M. O. (Гончаров М.О.)Nariezhnii O. P. (Нарєжній О.П.)Malakhov S. V. (Малахов С.В.)
##submission.copyrightStatement##
2025-10-222025-10-2233747AGILE APPROACH TO THE IMPLEMENTATION OF THE METHODOLOGY OF DATA COLLECTION, PROCESSING, STORAGE AND CLASSIFICATION IN ACCORDANCE WITH SOC2 TYPE2 REQUIREMENTS
https://journals.dut.edu.ua/index.php/dataprotect/article/view/3303
<p>The issues related to compliance with the SOC 2 Type 2 standard when managing data in cloud environments are<br>considered. The work focuses on such key aspects as building a Medallion architecture, implementing access control, and<br>automating data classification processes. It is studied that one of the main requirements is the complexity of integrating SOC 2<br>with Agile processes and the high threshold of entry for organizations without deep expertise in AI and DevOps. In addition,<br>the dangers are posed by the shortcomings of traditional classification methods, which do not always take into account the<br>semantic context and require significant resources for scaling. It is also important to obtain the risks associated with the<br>inconsistency of encryption policies and the lack of effective monitoring. The use of LLM models integrated into Microsoft<br>Azure Fabric allows you to automate classification, increase the accuracy of entity detection, and provide multi-level access<br>control. The proposed architecture is due to the flexibility of Agile and the strictness of the SOC 2 Type 2 regulatory<br>requirements, which ensures constant compliance with the standard even in dynamic environments. Additionally, the use of the<br>Scrum approach allows for increased implementation of architecture components with regular auditing and process<br>transparency. Based on the most common problems that companies face when preparing for a SOC 2 audit, the main threats and<br>ways to minimize them were analyzed. The study considered both technological aspects (ETL, OneLake, Power BI, Data<br>Activator) and organizational ones (role distribution, sprint management). The analysis showed that the key difficulties are<br>associated with ensuring continuous monitoring, compliance with access policies and audit transparency. Taking these<br>challenges into account, recommendations have been developed for implementing databases on Azure Fabric and Azure AI<br>Foundry using Agile-praktic. Using iterative approaches, regular testing of controls, and integration of automated tools can<br>significantly reduce the risk of SOC 2 Type 2 non-compliance. In addition, an organization can improve data management<br>efficiency and provide customer trust to account for process transparency, continuous auditing, and adaptive architecture.<br><strong>Keywords</strong>: SOC 2 Type 2, Agile, Scrum, Microsoft Azure, Medallion Architecture, OneLake, Fabric Data Factory,<br>Power BI, Data Activator, LLM, data classification, encryption, auditing, access control.</p> <p><strong>References</strong><br>1. The Art of Service, SOC 2 Type 2 Report: A Complete Guide, 2020 Edition, 2020.<br>2. Deineka O., Harasymchuk O., Partyka A., Obshta A., Application of LLM for assessing the effectiveness and<br>potential risks of the information classification system according to SOC 2 type II, CEUR Workshop Proceedings, 2025.<br>3. Deineka O., Harasymchuk O., Partyka A., Kozachok V., Information classification framework according to SOC<br>2 Type II, CEUR Workshop Proceedings, 2024.<br>4. Deineka O., Harasymchuk O., Partyka A., Obshta A., Korshun N., Designing Data Classification and Secure<br>Store Policy According to SOC 2 Type II, CEUR Workshop Proceedings, 2024.<br>5. Ozdemir S., Quick Start Guide to Large Language Models: Strategies and Best Practices, 2023.<br>6. Armbrust M., Ghodsi A., Xin R., Zaharia M., Lakehouse: A New Generation of Open Platforms that Unify Data<br>Warehousing and Advanced Analytics, CIDR, 2021.<br>10. Martseniuk Y., et al.: Shadow IT risk analysis in public cloud infrastructure // CEUR Workshop Proceedings.<br>2024, 3800, pp. 22-31.<br>11. Martseniuk Y., et al.: Universal centralized secret data management for automated public cloud provisioning //<br>CEUR Workshop Proceedings. – 2024, 3826, pp. 72–81.<br>12. Shevchuk D., et al.: Designing Secured Services for Authentication, Authorization, and Accounting of Users //<br>CEUR Workshop Proceedings, 2023, 3550. pp. 217-225.<br>13. Microsoft, Azure Documentation, [Online]. Available: https://docs.microsoft.com/en-us/azure/.<br>14. Microsoft, SharePoint Documentation, [Online]. Available: https://learn.microsoft.com/en-us/sharepoint.<br>15. Microsoft, OneDrive Documentation, [Online]. Available: https://learn.microsoft.com/en-us/onedrive.<br>16. Microsoft, Power BI Documentation, [Online]. Available: https://learn.microsoft.com/en-us/power-bi/.<br>17. Schwaber, K., & Sutherland, J. The Scrum Guide: The Definitive Guide to Scrum. Scrum.org, 2020.<br>https://scrumguides.org/download?utm_source=chatgpt.com.<br>18. Cohn, M. Succeeding with Agile: Software Development Using Scrum. Addison-Wesley, 2009. ISBN-10:<br>0321579364; ISBN-13: 978-0321579362.<br>19. Beck, K. et al. Manifesto for Agile Software Development. Agile Alliance, 2001.<br>20. Rubin, K. S. Essential Scrum: A Practical Guide to the Most Popular Agile Process. Addison-Wesley, 2012.<br>21.Kniberg, H. Scrum and XP from the Trenches. InfoQ, 2007. https://scrumexpansion.org/scrum-guideexpansion-pack/?utm_source=chatgpt.com.</p>Дейнека О. Р. (Deineka O.R.)Гарасимчук О. І. (Harasymchuk O.I.)
##submission.copyrightStatement##
2025-10-222025-10-2234855SITUATION-ORIENTED SECURITY MANAGEMENT SYSTEMS BASED ON A UNIFIED MATRIX MODEL: A LOGICAL-LINGUISTIC AND INTERDISCIPLINARY APPROACH
https://journals.dut.edu.ua/index.php/dataprotect/article/view/3304
<p>The article substantiates the concept of using a unified matrix model as a basis for creating situation-oriented security<br>management systems (SMS) in conditions of complex multi-level threat dynamics. A methodology for formalizing the structural and functional components of the SMS is developed based on logical-linguistic constructs and inter-sectoral matrices that reflect<br>the relationships between management entities, security objects, types of threats, forms of risk, response policies and tools for<br>implementing protective measures. Five stages of situational management are distinguished - threat detection, risk assessment,<br>identification of alternatives, decision-making and performance control - which are presented in the form of a typical cycle of<br>management action. An architecture for information integration of the unified model into decision support systems (DSS) and<br>situational centers as part of the nationwide response network is proposed. An example of practical implementation of the model<br>for a scenario of an inter-sectoral threat in the critical infrastructure sector with a multidimensional assessment of effectiveness<br>is demonstrated. The results obtained confirm the feasibility of further development of a systemic approach to situational<br>management, focused on proactive threat detection and adaptive response in conditions of hybrid danger and increasing<br>complexity of the security environment.<br><strong>Keywords</strong>: situational management, unified matrix model, security system, critical infrastructure, inter-sectoral threat.</p> <p><strong>References</strong><br>1. Domarev, V. V. (2004). Bezpeka informatsiinykh tekhnolohii: Systemnyi pidkhid [Information-technology<br>security: A systems approach]. TID “Diasoft”. https://nvd.luguniv.edu.ua/archiv/NN9/10plvvas.pdf (arxiv.org).<br>2. Domarev, V. V. (2002). Bezpeka informatsiinykh tekhnolohii: Metodolohiia stvore nnia system zakhystu<br>[Information-technology security: Methodology for building protection systems]. TID “DS”. https://www.<br>bsut.by/images/MainMenuFiles/Obrazovanie/Studentam/eumkd/et/euk_56_029/ch1/ch1_1/ch1_1_1.pdf (bsut.by).<br>3. Domarev, V. V., & Domarev, D. V. (2012). Upravlinnia informatsiinoiu bezpekoiu v bankivskykh ustanovakh:<br>Teoriia i praktyka vprovadzhennia standartiv serii ISO 27k [Information-security management in banking institutions:<br>Theory and practice of ISO 27k implementation]. Velstar. https://www.old.nas.gov.ua/siaz/ Ways_of_development_of_<br>Ukrainian_science/article/12068.001.pdf.<br>4. National Bank of Ukraine. (2010). DSTU SUIB 1.0/ISO/IEC 27001:2010. Informatsiini tekhnolohii. Metody<br>zakhystu. Systema upravlinnia informatsiinoiu bezpekoiu. Vymohy (ISO/IEC 27001:2005, MOD). https://kyianyn.files.<br>wordpress.com/2010/12/nbu-27001.pdf (scispace.com).<br>5. National Bank of Ukraine. (2010). DSTU SUIB 2.0/ISO/IEC 27002:2010. Informatsiini tekhnolohii. Metody<br>zakhystu. Zvid pravyl dlia upravlinnia informatsiinoiu bezpekoiu (ISO/IEC 27002:2005, MOD). https://sbyte.com/useful/27002.pdf (scispace.com).<br>6. National Bank of Ukraine. (2011, March 3). Lyst № 24112/365: Metodychni rekomendatsii shchodo<br>vprovadzhennia systemy upravlinnia informatsiinoiu bezpekoiu ta metodyky otsinky ryzykiv vidpovidno do standartiv<br>NBU [Letter No. 24112/365: Guidelines for ISMS implementation and risk assessment]. https://bank.gov.ua<br>(bank.gov.ua).<br>7. Domarev, V. V. (2004). Otsinka efektyvnosti system zakhystu informatsii [Evaluation of the effectiveness of<br>information-protection systems]. Problemy zakhystu informatsii. Retrieved from https://pgf.udpu.edu.ua/wpcontent/uploads/2019/12/РП-Інформаційна-безпека.pdf (pgf.udpu.edu.ua).<br>8. Domarev, D. V., & Domarev, V. V. (2011). Information security management system “Matrix” based on system<br>approach. Problemy informatyzatsii ta upravlinnia, 2(34), 36-39. https://doi.org/10.18372/22255036.19.4706.<br>9. Moroz, O. Ya. (1972). Lohiko-hnoseolohichnyi analiz pryntsypiv kybernetychnoho modeliuvannia [Logicalgnoseological analysis of cybernetic-modeling principles]. Naukova dumka. https://iino.knuba.edu.ua/.../Філософія.pdf<br>(iino.knuba.edu.ua).<br>10. Shengeriy, L. M. (2007). Ihrova skhema ratsionalnosti: Lohiko-analitychne modeliuvannia vzaiemodii<br>subiektiv [The game scheme of rationality: A logical-analytical modeling of subject interaction]. Filosofski obryi, 18,<br>129-141. https://harvester.nas.gov.ua/Record/irk-123456789-73475 (harvester.nas.gov.ua).<br>11. Bezshtanko, V. (2006). Tsykl vprovadzhennia systemy upravlinnia informatsiinoiu bezpekoiu [Cycle of<br>information-security management system implementation]. Pravove, normatyvne ta metrologichne zabezpechennia<br>systemy zakhystu informatsii v Ukraini, 2(13), 123–126. https://ela.kpi.ua/handle/123456789/10974 (ela.kpi.ua).<br>12. Kharchenko, V., Pechevysty, R., Alexeiev, O., & Karapetyan, S. (2020). Selection of a system of indicators<br>characterizing the effectiveness of the flight safety management system. Proceedings of the National Aviation University,<br>84(3), 14–18. https://doi.org/10.18372/2306-1472.84.14948 (jrnl.nau.edu.ua).<br>13. Ostriakova, V. Yu. (2017). Formuvannia systemy upravlinnia informatsiinoiu bezpekoiu pidpryiemstv<br>[Formation of the enterprise information-security management system] (Candidate’s thesis). Kyiv National University of<br>Technologies and Design. https://er.knutd.edu.ua/handle/123456789/8187 (er.knutd.edu.ua).<br>14. Ananchenko, O. Ye. (2016). Pytannia formuvannia orhanizatsiinoi struktury systemy upravlinnia<br>informatsiinoiu bezpekoiu pidpryiemstva [Issues of forming the organizational structure of an enterprise informationsecurity management system]. Suchasnyi zakhyst informatsii, 1, 79-83. https://journals.dut.edu.ua/index.php/ dataprotect/<br>article/view/536 (journals.dut.edu.ua).<br>15. Lysenko, S. O. (2023). Rozvytok systemy derzhavnoho upravlinnia informatsiinoiu bezpekoiu na suchasnomu<br>etapi [Development of the state information-security management system at the present stage]. Law and Public<br>Administration, (1), 53-60. https://doi.org/10.32782/pdu.2023.1.53 (researchgate.net).<br>16. Medvid, V. Yu., Pravdyvets, O. M., & Kryvchun, R. Yu. (2023). Teoretyko-metodychni zasady formuvannia<br>systemy upravlinnia informatsiinoiu bezpekoiu pidpryiemstva [Theoretical and methodological principles for forming an<br>enterprise information-security management system]. Agrosvit, 1, 24–30. https://doi.org/10.32702/2306-6792.2023.1.24<br>(dspace.krok.edu.ua).<br>17. Mykolaychuk, M., & Popov, M. (2025). Udoskonalennia systemy instrumentiv upravlinnia bezpekoiu Ukrainy<br>na rehionalnomu rivni [Improvement of the system of management tools for Ukraine’s security at the regional level].<br>Natsionalni Interesy Ukrainy, 3(8), 232–251. https://doi.org/10.52058/3041-1793-2025-3(8)-232-251 (researchgate.net).<br>18. Koryeeva, N. H. (2020). Formuvannia suchasnoi systemy upravlinnia informatsiinoiu bezpekoiu viiskovoi<br>chasty [Formation of the modern information-security management system of a military unit] (Master’s thesis). Chernihiv<br>National Technological University. https://ir.stu.cn.ua/handle/123456789/19964 (ir.stu.cn.ua).<br>19. Baranova, O. A., Shtefan, D. Yu., & Shvetsov, V. M. (2013). Informatsiina model avtomatyzovanoi systemy<br>upravlinnia informatsiinoiu bezpekoiu sudna [Information model of an automated ship information-security management<br>system]. Proceedings of the III All-Ukrainian Scientific-Practical Conference “Modern Problems of Information Security<br>in Transport” (pp. 1–5). Mykolaiv: National University of Shipbuilding. https://eir.nuos.edu.ua/handle/123456789/1218<br>(eir.nuos.edu.ua).<br>20. Tereshchenko, L. O. (2021). Upravlinnia ryzykamy informatsiinykh system: etapy protsesu upravlinnia<br>ryzykamy [Risk management of information systems: Stages of the risk-management process]. Ekonomika ta Suspilstvo,<br>(31), Article 12. https://doi.org/10.32782/2524-0072/2021-31-12 (economyandsociety.in.ua).<br>21. Beliachenko, V. V., Bobrov, S. V., & Utiushev, M. K. (2021). Upravlinnia ryzykamy stvorennia elementiv<br>avtomatyzovanykh system upravlinnia [Risk management in the development of automated control-system elements].<br>Zbirnyk naukovykh prats Tsentru voienno-stratehichnykh doslidzhen Natsionalnoho universytetu oborony Ukrainy im. I.<br>Cherniakhovskoho, 3(70), 101–106. https://doi.org/10.33099/2304-2745/2020-3-70/101-106.<br>22. Dodon, O. D., & Kovalenko, O. O. (2022). Modeli informatsiinykh system upravlinnia personalom [Models<br>of human-resource-management information systems]. Efektyvna ekonomika, (11). https://doi.org/10.32702/2307-<br>2105.2022.11.22.<br>23. Netreba, I. (2014). Etapy rozvytku informatsiinykh system upravlinnia pidpryiemstvom [Stages of<br>development of enterprise-management information systems]. Formuvannia rynkovoi ekonomiky v Ukraini, 31(2), 82–<br>85. https://irbis-nbuv.gov.ua/.../Nvmgu_eim_2015_10_27.pdf (irbis-nbuv.gov.ua).<br>24. Semenyuk, A. Ya. (2009). Rozvytok standartiv informatsiinykh system dlia upravlinnia pidpryiemstvom<br>[Development of standards for enterprise-management information systems]. Naukovyi visnyk Uzhhorodskoho<br>natsionalnoho universytetu. Seriia Ekonomika, 28(2), 143–148. https://dspace.uzhnu.edu.ua/jspui/handle/lib/52105<br>(dspace.uzhnu.edu.ua).<br>25. Netreba, I. O. (2013). Pidkhody do klasyfikatsii informatsiinykh system upravlinnia pidpryiemstvom<br>[Approaches to the classification of enterprise-management information systems]. Formuvannia rynkovykh vidnosyn v<br>Ukraini, (4), 137–140. https://irbis-nbuv.gov.ua/.../frvu_2013_4_33 (irbis-nbuv.gov.ua).<br>26. Bezborodova, T. V. (2007). Peredumovy ta etapy formuvannia korporatyvnykh informatsiinykh system<br>upravlinnia [Preconditions and stages of forming corporate-management information systems]. Ekonomika ta derzhava,<br>(10), 41–44. https://www.economy.nayka.com.ua/?op=1&z=674 (economy.nayka.com.ua).<br>27. Solovyiov, V. M., Serdiuk, O. A., & Danylychuk, G. B. (2016). Modeliuvannia skladnykh system [Modeling<br>of complex systems]. Vydavets O. Yu. Vovchok. https://doi.org/10.31812/0564/1065.<br>28. Solovyiov, V. M. (2017). Universalnyi instrumentarii modeliuvannia skladnykh system [Universal toolkit for<br>modeling complex systems]. New Computer Technology, 15, 10–14. https://doi.org/10.55056/nocote.v15i0.617.<br>29. Bratushka, S. M. (2009). Imitatsiine modeliuvannia yak instrument doslidzhennia skladnykh ekonomichnykh<br>system [Simulation modeling as a tool for studying complex economic systems]. Visnyk Ukrainskoi akademii bankivskoi<br>spravy, 2(27), 113–118. http://essuir.sumdu.edu.ua/handle/123456789/55242 (essuir.sumdu.edu.ua).<br>30. Khimich, O. M. (2018). Superkomp’iuterni tekhnolohii ta matematychne modeliuvannia skladnykh system<br>[Supercomputer technologies and mathematical modeling of complex systems]. Visnyk Natsionalnoi akademii nauk<br>Ukrainy, (5), 69–72. https://irbis-nbuv.gov.ua/.../vnanu_2018_5_21 (irbis-nbuv.gov.ua).</p>Домарєв В. В. (Domarev V.V.)Прокопович-Ткаченко Д. І. (Prokopovych-Tkachenko D.I.)Зверев В. П. (Zverev V.P.)Бушков В. Г. (Bushkov V.G.)Козаченко І. М. (Kozachenko I.M.)
##submission.copyrightStatement##
2025-10-252025-10-2535667INCREASING THE EFFICIENCY OF THE STEGANOGRAPHIC SYSTEM THROUGH THE USE OF IMAGE PROCESSING METHODS
https://journals.dut.edu.ua/index.php/dataprotect/article/view/3305
<p>The development of computer networks has led to an increase in the volume of information transmitted over them and,<br>quite often, requires protection from unauthorized access. Along with cryptographic methods, steganographic methods of hiding<br>information are actively developing. The effectiveness of a steganographic system depends on many factors. Among them, the<br>semantic content of the stegocontainer image and the methods of implementing the algorithm itself should be highlighted. To a<br>much lesser extent, the scientific literature has paid attention to the study of the influence of stegocontainer processing methods<br>on the effectiveness of the stegosystem. This work proposes a modified generalized model of a steganographic system, which<br>contains two additional blocks - a block of improvement methods and a block of reference efficiency criteria. Before hiding, the<br>stegocontainer is processed by pre-processing methods – improvement, dynamic range correction, noise removal, etc. and<br>checked for compliance with the efficiency criteria of stegosystems. The approximate values of the listed efficiency criteria are<br>obtained on the basis of statistical data. As a result of the conducted research, it was confirmed that the methods of hiding in the<br>frequency domain (DCT, YASS) are more effective compared to the methods of embedding in the spatial domain (LSB).<br>Methods using neural networks (CNN, U-Net) are even more effective. Experimental modeling of the influence of noise and<br>blurring of the stegocontainer on the main parameters of the efficiency of the steganosystem using the LSB algorithm was<br>carried out. It was established that the method of embedding in the least significant bit, due to the adaptability of concealment,<br>provides high visual quality of images even after embedding a large text message and in the presence of blurring. Impulse noise<br>significantly reduces the visual quality of perception. Also, the preservation of hidden information is negatively affected by<br>information compression, especially in the case of using embedding methods in the spatial domain.<br><strong>Keywords</strong>: steganosystem efficiency, image processing, information protection, neural networks, spatial and frequency<br>domain.</p> <p><strong>References</strong><br>1. Журавель Ю. І., Мичуда Л. З. Підвищення ефективності стеганографії через застосування методів<br>покращання зображень та моделей штучного інтелекту // Сучасний захист інформації. 2025. № 2(62). С. 59–67.<br>DOI: 10.31673/2409-7292.2025.023202.<br>2. Gonzalez R., Woods R. Digital image processing. 2nd ed. NJ: Prentice Hall, 2002.<br>3. Салімонович А. О., Гармаш В. В. Метод фільтрації цифрових зображень на основі білатерального<br>фільтру : дис. … д-ра техн. наук. Вінниця : ВНТУ, 2024.<br>4. Gao C., Song C., Zhang Y., Qi D., Yu Y. Improving the performance of infrared and visible image fusion based<br>on latent low-rank representation nested with rolling guided image filtering // IEEE Access. 2021. Vol. 9. P. 91462-91475.<br>5. Zhang D., He Z., Zhang X., Wang Z., Ge W., Shi T., Lin Y. Underwater image enhancement via multi-scale<br>fusion and adaptive color-gamma correction in low-light conditions // Engineering Applications of Artificial Intelligence.<br>2023. Vol. 126. Article ID 106972.<br>6. Cai Y., Bian H., Lin J., Wang H., Timofte R., Zhang Y. Retinexformer: One-stage retinex-based transformer for<br>low-light image enhancement // Proc. IEEE/CVF Int. Conf. on Computer Vision. 2023. P. 12504-12513.<br>7. Shah M., Khan M., Khan S. S., Ali S. Multi-Focus Image Fusion using Unsharp Masking with Discrete Cosine<br>Transform. 2023. [Електронний ресурс].<br>8. Halidou A., Mohamadou Y., Ari A. A. A., Zacko E. J. G. Review of wavelet denoising algorithms // Multimedia<br>Tools and Applications. 2023. Vol. 82, No. 27. P. 41539-41569.<br>9. Zhang C., Yen K. S. A Refined First-Order Sparse TGV Model with L1 Norm Data Fidelity for Enhanced<br>Image Denoising // Int. Symp. on Systems Modelling and Simulation. Singapore : Springer Nature Singapore, 2024. P. 1-<br>13.<br>10. Alnuaimy A. N., Jawad A. M., Abdulkareem S. A., Mustafa F. M., Ivanchenko S., Toliupa S. BM3D denoising<br>algorithms for medical image // 2024 35th Conf. of Open Innovations Association (FRUCT). IEEE, 2024. P. 135–141.<br>11. Журавель Ю. І., Мичуда Л. З. Метод кількісного оцінювання візуальної якості цифрових кольорових<br>зображень // Сучасний захист інформації. 2024. № 4(60). С. 39-45. DOI: 10.31673/2409-7292.2024.040004.<br>12. Хорошко В. О., Яремчук Ю. Є., Карпінець В. В. Комп’ютерна стеганографія. Вінниця : ВНТУ, 2017.<br>244 с.<br>13. Treder M. S., Codrai R., Tsvetanov K. A. Quality assessment of anatomical MRI images from generative<br>adversarial networks: Human assessment and image quality metrics // Journal of Neuroscience Methods. 2022. Vol. 374.<br>Article ID 109579.<br>14. Neißner A., Mäder U., Fiebich M. Enhancing clinical CT image quality assessment: adapting no-reference<br>methods NIQE and BRISQUE // Medical Imaging 2025: Physics of Medical Imaging. 2025. Vol. 13405. P. 903-911.</p>Журавель Ю. І. (Zhuravel Yu.I.)Онишко В. Р. (Onyshko V.R.)
##submission.copyrightStatement##
2025-10-252025-10-2536874CYBERSECURITY RISK MANAGEMENT USING NIST CSF 2.0
https://journals.dut.edu.ua/index.php/dataprotect/article/view/3306
<p>The article examines the issue of cybersecurity risk management using the NIST Cybersecurity Framework (CSF), which<br>is one of the most common and flexible tools in the field of cybersecurity. The relevance of the study is due to the rapid growth<br>in the complexity and frequency of cyberattacks that threaten business continuity, personal data security, and national security.<br>In modern conditions, organizations face the challenges of adapting to new types of threats, such as attacks on supply chains,<br>abuse of artificial intelligence technologies, as well as a chronic shortage of qualified personnel. A systemic approach to risk<br>management is proposed, based on the NIST CSF version 2.0 framework, which covers six functional domains: from asset and<br>vulnerability identification to strategic cybersecurity management. Based on the criteria of organizational maturity and the level<br>of criticality of control measures, a method for building a cybersecurity profile is presented, which allows you to identify gaps<br>and determine priorities for improvement. The study emphasizes the advantages of NIST CSF as an adaptive, universal and<br>scalable tool suitable for different types and sizes of companies. The practical significance of the results lies in the possibility<br>of their application in Ukrainian companies with limited resources that require an effective mechanism for identifying<br>vulnerabilities, building cyber protection policies and achieving compliance with international standards. The proposed<br>recommendations are aimed at increasing resilience to cyber threats and reducing the impact of digital threats on critical<br>processes of the organization.<br><strong>Keywords</strong>: information security, risk management system, standard, NIST CSF, security measures.</p> <p><strong>References</strong><br>1. Global Cybersecurity Outlook 2025 URL: https://www.weforum.org/publications/global-cybersecurityoutlook-2025.<br>2. NIST Cybersecurity Framework // National Institute of Standards and Technology. URL: https://<br>www.nist.gov/cyberframework<br>3. NIST Cybersecurity Framework Version 2.0 // National Institute of Standards and Technology. URL:<br>https://www.nist.gov/news-events/news/2024/02/nist-releases-draft-update-cybersecurity-framework-version-20.<br>4. ISO/IEC 27001: Information Security Management // International Organization for Standardization URL:<br>https://www.iso.org/isoiec-27001-information-security.html.<br>5. Кухарська Н.П., Семенюк С.А., Полотай О. І. (2025). Ключові аспекти оновленого стандарту<br>ISO/IEC 27002:2022. Сучасний захист інформації, №2, https://doi.org/10.31673/2409-7292.2025.023969.<br>6. COBIT Framework // ISACA. URL: https://www.isaca.org/resources/cobit.<br>7. CIS Controls // Center for Internet Security. URL: https://www.cisecurity.org/controls.<br>8. Kitsios, F., Chatzidimitriou, E., & Kamariotou, M. (2023). The ISO/IEC 27001 Information Security<br>Management Standard: How to Extract Value from Data in the IT Sector. Sustainability, 15(7), 5828.<br>https://doi.org/10.3390/su15075828<br>9. Utomo, D., Wijaya, M., Suzanna, S., Efendi, E., & Sagala, N. T. M. (2022). Leveraging COBIT 2019 to<br>Implement IT Governance in SME Context: A Case Study of Higher Education in Campus A. CommIT (Communication<br>and Information Technology) Journal, 16(2), 129–141. https://doi.org/10.21512/commit.v16i2.8172.<br>10. Edwards, J. (2024). Critical security controls for effective cyber defense. In Apress eBooks.<br>https://doi.org/10.1007/979-8-8688-0506-6.<br>11. Alshar’e, M. (2023). Cyber security framework selection: comparison of NIST and ISO 27001. Applied<br>Computing Journal, 3(1), 245-255. https://doi.org/10.52098/acj.202364.<br>12. Udroiu, A. M., Dumitrache, M., & Sandu, I. (2022, June). Improving the cybersecurity of medical systems by<br>applying the NIST framework. In 2022 14th International Conference on Electronics, Computers and Artificial<br>Intelligence (ECAI) (pp. 1-7). IEEE. https://doi.org/10.1109/ECAI54874.2022.9847498.</p>Іваночко Т. А. (Ivanochko T.A.)Семенюк С. А. (Semenyuk S.A.)
##submission.copyrightStatement##
2025-10-252025-10-2537582THE METHOD OF CONSTRUCTING A NETHERWRITER CRYPTOSYSTEM BASED ON M-CODES
https://journals.dut.edu.ua/index.php/dataprotect/article/view/3307
<p>The article proposes a method for increasing the cryptoresistance of the Niederreiter cryptosystem by using M-codes –<br>algebrogeometric codes built on elliptic curves. The relevance of developing a mathematical apparatus for designing secure<br>information networks in the context of growing cyberthreats is substantiated. The purpose of the study is to develop approaches<br>to the system design of cryptosystems based on structural specifications. The Niederreiter crypto-code construction is<br>considered, the stability of which is based on the NP-complete problem of decoding a random linear code. The use of<br>algebrogeometric codes over GF(q) based on elliptic curves (genus g=1) is proposed, which provides improved combinatorial and asymptotic properties of codes. The mathematical apparatus for constructing a code verification matrix using geometric<br>parameters of curves is presented. It is shown that such an approach allows to increase the number of corrected errors and<br>increase noise immunity. An equilibrium coding algorithm for forming an error vector is also described. The proposed method<br>allows to determine the minimum number of processing modules, distribute functions between them and set performance<br>specifications, which significantly reduces the development time of protection systems. The results have practical significance<br>for creating survivable information networks, especially in conditions of intensive cyberattacks, in particular during wartime.<br><strong>Keywords</strong>: information protection, cybersecurity, crypto-code system, coding, codegram, crypto-resistance.</p> <p><strong>References</strong><br>1. Павлов І.М., Хорошко В.О. Проектування комплексних систем захисту інформації. К.: ВІТІ – ДУІКТ,<br>2011. 245 с.<br>2. Barabash O., Musienko A., Sobchuk V., Lukova-Chuiko N., Svynchuk O. Distribution of Values of Cantor<br>Type Fractal Functions with Specified Restrictions. Chapter in Book “Contemporary Approaches and Methods in<br>Fundamental Mathematics and Mechanics”. Editors Victor A. Sadovnichiy, Michael Z. Zgurovsky. Publisher Name:<br>Springer, Cham, Switzerland AG 2021. Р. 433-455. https://link.springer.com/book/10.1007/978-3-030-50302-4.<br>3. Barabash O.V., Dakhno N.B., Shevchenko H.V., Majsak T.V. Dynamic Models of Decision Support Systems<br>for Controlling UAV by Two-Step Variational-Gradient Method. Proceedings of 2017 IEEE 4th International Conference<br>“Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD)”, October 17-19, 2017, Kyiv, Ukraine:<br>National Aviation University, 2017. P. 108-111.<br>4. Лаптев О.А., Собчук В.В., Саланди И.П., Сачук Ю.В. Математична модель структури інформаційної<br>сеті на основі нестационарної іерархічної та стаціонарної гиперсети. Збірник наукових праць Військового<br>інституту Київського національного університету імені Тараса Шевченка. К.: ВІКНУ, Вип. 64, 2019. С. 124-132.<br>5. Lubov Berkman, Oleg Barabash, Olga Tkachenko , Andri Musienko, Oleksand Laptiev, Ivanna Salanda. The<br>Intelligent Control System for infocommunication networks. International Journal of Emerging Trends in Engineering<br>Research (IJETER) Volume 8. No. 5, May 2020. Scopus Indexed - ISSN 2347-3983. P.1920-1925.<br>6. Звіт ETSI Security Aspects of Channel Coding in 6G Systems (TR 103 756 V1.1.1). 2024.<br>7. Serhii Yevseiev, Khazail Rzayev, Oleksandr Laptiev, Ruslan Hasanov, Oleksandr Milov, Bahar Asgarova, Jale<br>Camalova, Serhii Pohasii. Development of a hardware cryptosystem based on a random number generator with two types<br>of entropy sources. Eastern-European journal of enterprise technologies. Vol.5 №9 (119). 2022 Р. 6–16. ISSN (print)<br>1729-3774. ISSN (on-line) 1729-4061. DOI: https://doi.org/10.15587/1729-4061.2022.265774.<br>8. Serhii Yevseiev, Khazail Rzayev, Oleksandr Laptiev, Ruslan Hasanov, Oleksandr Milov, Bahar Asgarova, Jale<br>Camalova, Serhii Pohasii. Development of a hardware cryptosystem based on a random number generator with two types<br>of entropy sources. Eastern-European journal of enterprise technologies. Vol.5 №9 (119). 2022 Р. 6–16. ISSN (print)<br>1729-3774. ISSN (on-line) 1729-4061. DOI: https://doi.org/10.15587/1729-4061.2022.265774.<br>9. F. K. Mammadov, “New approach to book cipher: web pages as a cryptographic key”, Advanced Information<br>Systems, vol. 7, no. 1, pp. 59–65, 2023, doi: https://doi.org/10.20998/2522-9052.2023.1.10.<br>10.S. Datsenko, and H. Kuchuk, “Biometric authentication utilizing convolutional neural networks”, Advanced<br>Information Systems, vol. 7, no. 2, pp. 87–91, 2023, doi: https://doi.org/10.20998/2522-9052.2023.2.12.<br>11.D. Salnikov, D. Karaman, and V. Krylova, “Highly reconfigurable soft-cpu based peripheral modules design”,<br>Advanced Information Systems, vol. 7, no. 2, pp. 92–97, 2023, doi: https://doi.org/10.20998/2522-9052.2023.2.13.<br>12.A. Podorozhniak, N. Liubchenko, V. Oliinyk, and V. Roh, “Research application of the spam filtering and<br>spammer detection algorithms on social media and messengers ”, Advanced Information Systems, vol. 7, no. 3, pp. 60-<br>66, 2023, doi: https://doi.org/10.20998/2522-9052.2023.3.09.</p>Лаптєв О. А. (Laptev O.A.)Стеценко В. О. (Stetsenko V.O.)
##submission.copyrightStatement##
2025-10-252025-10-2538389CONCEPTUAL APPROACHES TO THE INTEGRATION OF ETHICAL NORMS INTO INFORMATION SECURITY POLICY
https://journals.dut.edu.ua/index.php/dataprotect/article/view/3308
<p>The article analyzes key conceptual approaches to integrating ethics into information security policy. Based on the<br>analysis of scientific publications, key ethical dilemmas arising in the field of information security are identified, in particular,<br>the problems of confidentiality, transparency, automation of decision-making and personnel monitoring. The need to formalize<br>ethical principles in internal regulatory documents is substantiated in order to increase responsibility, transparency and trust in<br>the digital environment. A classification of existing approaches to the implementation of ethics in information security with<br>certain characteristics, ethical dimension and evaluation criteria is proposed: regulatory and legal, professional and ethical,<br>corporate and ethical, educational, technological and ethical. The developed criteria allow for the further formation of a holistic<br>system for assessing the effectiveness of approaches. A conceptual model of the integration of ethical norms is created, which<br>provides for the stages of diagnostics, formalization, implementation, training, monitoring and criteria for assessing ethical<br>impact. The model allows systematizing the process of implementing ethical principles into organizational documents of<br>information security. Recommendations are presented for developing internal policies taking into account ethical principles,<br>conducting an ethical audit, and establishing an ethics committee within the organization. The proposed recommendations allow<br>for the formation of an ethically mature corporate culture, where security is based on moral principles, trust, and respect for<br>human rights in the digital environment.<br><strong>Keywords</strong>: information security, cybersecurity ethics, corporate codes of ethics, information security policy.</p> <p><strong>References</strong><br>1. Гапіченко , А., & Штанько , В. (2025). Етичні принципи як основа кібербезпеки в умовах цифрових<br>загроз. Збірник наукових праць «ΛΌГOΣ» , (24 січня 2025 р.; Сеул, Південна Корея), 322–325. https://doi.org/<br>10.36074/logos-24.01.2025.067.<br>2. Yaghmaei, E., van de Poel, I., Christen, M., Gordijn, B., Kleine, N., Loi, M., Morgan, G., & Weber, K. (2017).<br>Canvas White Paper 1 Cybersecurity and Ethics. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3091909.<br>3. WEBER, K. (2022a). CYBERSECURITY AND ETHICAL, SOCIAL, AND POLITICAL<br>CONSIDERATIONS: WHEN CYBERSECURITY FOR ALL IS NOT ON THE TABLE. Humanities and Social Sciences<br>quarterly. https://doi.org/10.7862/rz.2022.hss.07.<br>4. WEBER, K. (2022b). CYBERSECURITY AND ETHICAL, SOCIAL, AND POLITICAL<br>CONSIDERATIONS: WHEN CYBERSECURITY FOR ALL IS NOT ON THE TABLE. Humanities and Social Sciences<br>quarterly. https://doi.org/10.7862/rz.2022.hss.07.<br>5. ПРОФЕСІЙНА ЕТИКА УПРАВЛІНСЬКОЇ ДІЯЛЬНОСТІ В КІБЕРБЕЗПЕЦІ. Навчальний посібник /<br>С.В. Легомінова, Ю.В. Щавінський, Т.М. Мужанова, Ю.М. Якименко, Т.В. Капелюшна, Д.І. Рабчун, К. : ДУТ,<br>2023, 198 с.<br>6. Wright, D. (2011). A framework for the ethical impact assessment of information technology. Ethics and<br>Information Technology. 13. 199-226. https://doi.org/10.1007/s10676-010-9242-6.<br>7. Halim, Z., Durya, N. P. M. A., Kraugusteeliana, K., Suherlan, S., & Alfisyahrin, A. L. (2023). Ethics-Based<br>Leadership in Managing Information Security and Data Privacy. Jurnal Minfo Polgan, 12(2), 1819–1828.<br>https://doi.org/10.33395/jmp.v12i2.13018.<br>8. Sharma, N. (2023). The Role of Ethics in Developing Secure Cyber-Security Policies. Tuijin Jishu/Journal of<br>Propulsion Technology. 43. 250-254. https://doi.org/10.52783/tjjpt.v43.i4.2346.<br>9. Formosa, P., Wilson, M., & Richards, D. (2021). A principlist framework for cybersecurity ethics. Computers<br>& Security, 109, 102382. https://doi.org/10.1016/j.cose.2021.102382.<br>10. Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., Luetge, C., Madelin, R., Pagallo,<br>U., Rossi, F., Schafer, B., Valcke, P., & Vayena, E. (2018). AI4People – An Ethical Framework for a Good AI Society:<br>Opportunities, Risks, Principles, and Recommendations. Minds and Machines, 28(4), 689–707.<br>https://doi.org/10.1007/s11023-018-9482-5.<br>11. Fenech, J., Richards, D., & Formosa, P. (2024). Ethical principles shaping values-based cybersecurity decisionmaking. Computers & Security, 140, 103795. https://doi.org/10.1016/j.cose.2024.103795.<br>12. Coates, Rebecca; Baruwal Chhetri, Mohan; Liu, Dongxi; Pieprzyk, Josef; Richelle, Regine; Kang, Wei;<br>Kwashie, Selasi; Wu, Tina; Nepal, Surya. Risks of quantum computing to cybersecurity: Perspectives from experts and<br>professionals. Brisbane: CSIRO; 2023. csiro:EP2022-5789. https://doi.org/10.25919/fv3w-6863.<br>13. Berestiana, T. (2024). Research in the Field of Quantum-Safe Cryptography. Сучасний захист інформації,<br>2(58), 109–116. https://doi.org/10.31673/2409-7292.2024.020013.<br>14. ACM. The Code affirms an obligation of computing professionals to use their skills for the benefit of society.<br>2018. Доступно за посиланням: https://www.acm.org/code-of-ethics . [Дата звернення: 24.06.2025].<br>15. Christen, M., Gordijn, B., & Loi, M. (2020). The Ethics of Cybersecurity. Springer International Publishing.<br>https://doi.org/10.1007/978-3-030-29053-5.<br>16. Воронюк, Ю., та Сатушева, К. (2024). Світовий досвід впровадження етичних принципів в організації<br>економічної безпеки підприємницької діяльності. Збірник наукових праць «Наукові записки», 34 (1), 6-15.<br>http://doi.org/10.33111/vz_kneu.34.24.01.01.005.011.</p>Легомінова С. В. (Legominova S.V.)Капелюшна Т. В. (Kapelyushna T.V.)Щавінський Ю. В. (Shchavinskyi Yu.V.)Мужанова Т. М. (Muzhanova T.M.)
##submission.copyrightStatement##
2025-10-252025-10-2539098ANALYSIS OF MODELS, METHODS AND SYSTEMS FOR ESTIMATING LOSSES FROM PERSONAL DATA LEAKAGE
https://journals.dut.edu.ua/index.php/dataprotect/article/view/3309
<p>The rapid spread of digital technologies, the globalization of information flows and the increase in the number of cyber<br>threats have led to a significant increase in the risk of personal data leaks, which causes both financial losses and reputational<br>and legal consequences for organizations. Existing approaches to assessing the criticality of personal data leak incidents are<br>fragmented: some focus on financial losses, others on technical or socio-psychological aspects, which complicates the formation<br>of a comprehensive assessment. In order to eliminate the identified gaps, the article has carried out a comparative analysis of<br>modern models, methods and systems for assessing the negative consequences of personal data leaks, and has identified their<br>strengths and weaknesses. Particular attention is paid to the compliance of the considered approaches with the provisions of<br>international standards, in particular GDPR, as well as the possibilities of their practical application in information systems. The<br>scientific novelty of the results obtained lies in the formation of a theoretical basis for the development of improved models and<br>methods for comprehensive assessment of losses from personal data leakage, taking into account economic, legal and<br>reputational factors.<br><strong>Keywords</strong>: personal data, loss assessment, incident criticality, confidentiality, GDPR, cybersecurity.</p> <p><strong>References</strong><br>1. Cost-Effective Risk Management | Resources. Quantitative Information Risk Management | The FAIR<br>Institute. URL: https://www.fairinstitute.org/learn-fair<br>2. Fair Information Practice Principles (FIPPs). Home | FPC.gov. URL: https://www.fpc.gov/resources/fipps/<br>3. Introduction to FAIR. Medium. URL: https://medium.com/@enstructure/ introduction-to-fair-bc5e7da0e72c<br>4. NIST Technical Series Publications. URL: https://nvlpubs.nist.gov/nistpubs/ legacy/sp/ nistspecialpublication800-30r1.pdf.<br>5. NIST Risk Management Framework | CSRC. NIST Computer Security Resource Center | CSRC. URL:<br>https://csrc. nist.gov/Projects/risk-management/about-rmf.<br>6. Луцький М.Г., Іванченко Є.В., Казмірчук С.В., Охрименко А.А. Сучасні засоби управління<br>інформаційними ризиками. Захист інформації. 2011. Т.13. № 3 (52). С. 97-108.<br>7. Луцький М.Г., Корченко А.Г., Іванченко Є.В., Казмірчук С.В. Дослідження програмних засобів аналізу<br>та оцінки ризиків інформаційної безпеки. Захист інформації. 2011. Т. 13. № 2 (51). С. 86-94.<br>8. NIST Privacy Framework: NIST Technical Series Publications. URL: https://nvlpubs.nist.gov/nistpubs<br>/CSWP/ NIST.CSWP.01162020.pdf.<br>9. ДСТУ ISO/IEC 27005:2023 Інформаційна безпека, кібербезпека та захист конфіденційності. Настанова<br>керування ризиками інформаційної безпеки (ISO/IEC 27005:2022, IDT). БУДСТАНДАРТ Online - нормативні<br>документи будівельної галузі України. URL: https: // online.budstandart.com / ua /catalog/doc-page.html?id_doc=<br>104400.<br>10. ДСТУ ISO 31000:2018 Менеджмент ризиків. Принципи та настанови (ISO 31000:2018, IDT)<br>URL: https://zakon.isu.net.ua/sites/default/files/normdocs /dstu_iso_31000_2018.pdf.<br>11. OWASP Risk Rating Methodology | OWASP Foundation. OWASP Foundation, the Open Source Foundation<br>for Application Security | OWASP Foundation. URL: https: // owasp.org / www-community/OWASP_<br>Risk_Rating_Methodology<br>12. Data Protection Impact Assessment (DPIA) GDPR.eu. GDPR.eu. URL: https: // gdpr.eu / data-protectionimpact-assessment-template/.<br>13. О.Г. Корченко, С.В. Казмірчук, Б.Б. Ахметов, Прикладні системи оцінювання ризиків інформаційної<br>безпеки. Монографія, Київ, ЦП «Компринт», 2017, 435 с.<br>14. Applying OCTAVE: Practitioners Report. URL: https://kilthub.cmu.edu/ articles/report/Applying_OCTAVE_<br>Practiti oners_Report/6571985/1?file=12057020.<br>15. «Expression des Besoins et Identification des Objectifs de Sécurité EBIOS», Méthode de gestion des risques,<br>ANSSI/ACE/BAC, Paris, Version du 25 janvier 2010, 95 р.<br>16. Потій О. В., Лєншин А. В. Дослідження методів оцінки ризиків безпеці інформації та розробка<br>пропозицій з їх вдосконалення на основі системного підходу. Збірник наукових праць Харківського університету<br>Повітряних сил. 2010. Вип. 2. С. 85-91. URL: http://nbuv.gov.ua/UJRN/ZKhUPS_2010_2_21.<br>17. Security Studies | Ponemon Institute. Ponemon Institute. URL: https://www.ponemon.org/research/ponemonlibrary/security/?tag=5.<br>18. Cyber Value at Risk (CVaR): Measuring Worst-Case Scenarios - Horkan. URL: https://horkan.com/2025/04/<br>21 / cyber-value-at-risk-cvar-measuring-worst-case-scenarios # :~: text = *% 20Focus % 20on % 20Worst,from%20 -<br>ransomware%20 to%20insider%20attacks.<br>19. Algarni, A. M., Thayananthan, V., & Malaiya, Y. K. (2021). Quantitative Assessment of Cybersecurity Risks<br>for Mitigating Data Breaches in Business Systems. Applied Sciences, 11(8), 3678. URL: https://doi.org/ 10.3390/<br>app11083678.<br>20. Korchenko A., Dreis Yu., Roshchuk M., Romanenko O. Consequence evaluation model of leak the state secret<br>from cyberattack directing on critical information infrastructure of the state. Ukrainian Scientific Journal of Information<br>Security, 2018, vol. 24, issue 1, p. 29-35. https: // doi.org / 10.18372/2225-5036.24.12606.<br>21. Савченко В.А., Ахрамович В.М., Акулінічева М.В. Оцінювання параметрів безпеки персональних<br>даних у степеневих соціальних мережах на основі їх топології. Сучасний захист інформації, №3(43), 2020. С. 6-<br>13. URL: https://doi.org/10.31673/2409-7292.2020.030613.<br>22. Шапран О.О. Моделі підвищення захищеності персональних даних користувачів системи<br>дистанційного навчання Збройних Сил України. Телекомунікаційні та інформаційні технології, 2022, № 2 (79). С.<br>33-45. URL: https://doi.org/10.31673/2412-4338.2022.023345.<br>23. Бойченко О. С., Костерев Д. С., Маковський І. Ю., Грищук О.М. Математична модель розрахунку<br>цінності інформації установи. Проблеми створення, випробування, застосування та експлуатації складних<br>інформаційних систем, 2022, №22, C.30–40. https://doi.org/10.46972/2076-1546.2022.22.03.<br>24. Толбатов А., Лозова І., Котик О., Толбатова О. Автоматизована система вибору засобів оцінювання<br>збитків від втрати персональних даних. ІМА: 2024: Матеріали міжнародної наукової конференції молодих учених<br>«Інформатика, математика, автоматика», Суми–Астана, 22–26 квітня 2024 р. Суми, 2024. С.256.<br>URL: https://files.znu.edu.ua/files/Bibliobooks/Inshi79/0059494.pdf.<br>25. Лозова І., Біскупський А., Горожанова А. Засоби оцінювання шкоди від втрати інформації з обмеженим<br>доступом. Стан та удосконалення безпеки інформаційно-телекомунікаційних систем (SITS’ 2021): збірник тез<br>наукових доповідей, 23-26 червня 2021 р. Миколаїв, Коблево, 2021. С.58-62.</p>Лозова І. Л. (Lozova I.L.)Різак М. В. (Rizak M.V.)Хохлачова Ю. Є. (Khokhlachova Yu.Ye.)Котик О. В. (Kotyk O.V.)
##submission.copyrightStatement##
2025-10-262025-10-26399107PRINCIPLES OF CONSTRUCTION OF SECURE CHANNELS FOR TRANSMISSION OF CONFIDENTIAL INFORMATION IN A DYNAMIC ENVIRONMENT
https://journals.dut.edu.ua/index.php/dataprotect/article/view/3312
<p>Modern systems for transmitting confidential information in the conditions of an increasing number of cyberattacks and<br>failures in the functioning of the infrastructure require new principles for building secure channels. The need for dynamic, stable<br>and adaptive management of data transmissions is especially relevant in the context of the development of critical information<br>infrastructure, distributed networks and mobile communications. This article proposes a concept for building secure channels,<br>adapted with an emphasis on adaptability, optimality, stability and distribution of control systems. To formalize the principles<br>of building secure channels, systems analysis and the analytical-synthetic method were used. The approaches were transformed<br>with subsequent modeling of adaptive channel management processes operating in a changing environment. Functional<br>components include network status monitoring, adaptive resource management, automatic response to threats, and a hierarchical<br>decision-making structure.<br><strong>Keywords</strong>: information protection, cybersecurity, threats, decision-making, confidentiality, integrity.</p> <p><strong>References</strong><br>1. Goodin D. The sorry state of TLS security: Most servers are vulnerable [Електронний ресурс] // Ars Technica,<br>2017. Режим доступу: https://arstechnica.com/information-technology/2017/10/the-sorry-state-of-tls-security-mostservers-are-vulnerable/<br>2. Krawczyk H., Eronen P. HMAC-based Extract-and-Expand Key Derivation Function (HKDF) [Електронний<br>ресурс] // RFC 5869. 2010. Режим доступу: https://datatracker.ietf.org/doc/html/rfc5869.<br>3. Akyildiz I. F., Su W., Sankarasubramaniam Y., Cayirci E. Wireless sensor networks: a survey // Computer<br>Networks. 2002. Vol. 38, no. 4. P. 393-422. DOI: https://doi.org/10.1016/S1389-1286(01)00302-4.<br>4. Hu Y.-C., Perrig A., Johnson D. B. Ariadne: A secure on-demand routing protocol for ad hoc networks //<br>Wireless Networks. 2005. Vol. 11. P. 21-38. DOI: https://doi.org/10.1007/s11276-004-0636-4.<br>5. Wang Y., Zhang Q., Li M., Sun Y. Survey on Security in Emerging Wireless Sensor Networks // Frontiers of<br>Computer Science. 2019. Vol. 13, no. 3. P. 419-438. DOI: https://doi.org/10.1007/s11704-017-6242-z.<br>6. Kreutz D., Ramos F. M. V., Verissimo P. E., Rothenberg C. E., Azodolmolky S., Uhlig S. Software-defined<br>networking: A comprehensive survey // Proceedings of the IEEE. 2015. Vol. 103, no. 1. P. 14-76. DOI:<br>https://doi.org/10.1109/JPROC.2014.2371999.<br>7. Mijumbi R., Serrat J., Gorricho J. L., Bouten N., De Turck F., Boutaba R. Network Function Virtualization:<br>State-of-the-art and research challenges // IEEE Communications Surveys & Tutorials. 2016. Vol. 18, no. 1. P. 236-262.<br>DOI: https://doi.org/10.1109/COMST.2015.2477041<br>8. Yazici A., Aydin M. A., Akinci M. A survey on security and privacy issues in SDN-based networks // Computer<br>Networks. 2020. Vol. 166. 106980. DOI: https://doi.org/10.1016/j.comnet.2019.106980.<br>9. Alshamrani A., Myneni S., Chowdhary A., Huang D. A survey on advanced persistent threats: Techniques,<br>solutions, challenges, and research opportunities // IEEE Communications Surveys & Tutorials. 2020. Vol. 21, no. 2. P.<br>1851-1877. DOI: https://doi.org/10.1109/COMST.2019.2957221.<br>10.Vinayakumar R., Soman K. P., Poornachandran P. Applying deep learning approaches for network traffic<br>classification and intrusion detection // Procedia Computer Science. 2019. Vol. 132. P. 20-27. DOI:<br>https://doi.org/10.1016/j.procs.2018.05.135.<br>11.Лаптев О.А., Собчук В.В., Саланди И.П., Сачук Ю.В. Математична модель структури інформаційної<br>сеті на основі нестационарної іерархічної та стаціонарної гиперсети. Збірник наукових праць Військового<br>інституту Київського національного університету імені Тараса Шевченка. К.: ВІКНУ, Вип. 64, 2019. С. 124-132.<br>12.Lubov Berkman, Oleg Barabash, Olga Tkachenko , Andri Musienko, Oleksand Laptiev, Ivanna Salanda. The<br>Intelligent Control System for infocommunication networks. International Journal of Emerging Trends in Engineering<br>Research (IJETER) Volume 8. No. 5, May 2020. Scopus Indexed - ISSN 2347 – 3983. P.1920-1925.<br>13.Звіт ETSI Security Aspects of Channel Coding in 6G Systems (TR 103 756 V1.1.1). 2024.<br>14.Serhii Yevseiev, Khazail Rzayev, Oleksandr Laptiev, Ruslan Hasanov, Oleksandr Milov, Bahar Asgarova, Jale<br>Camalova, Serhii Pohasii. Development of a hardware cryptosystem based on a random number generator with two types<br>of entropy sources. Eastern-European journal of enterprise technologies. Vol.5 №9 (119). 2022 Р. 6-16. ISSN (print) 1729-<br>3774. ISSN (on-line) 1729-4061. DOI: https://doi.org/10.15587/1729-4061.2022.265774.</p>Пархоменко І. І. (Parkhomenko I.I.)
##submission.copyrightStatement##
2025-10-262025-10-263108115AN INTELLIGENT MODEL FOR PREDICTING AND RESPONDING TO CYBER THREATS USING MULTILAYER RECURRENT NEURAL NETWORKS AND MODERN RISK MANAGEMENT STRATEGIES
https://journals.dut.edu.ua/index.php/dataprotect/article/view/3313
<p>The research is devoted to the development and experimental verification of an intelligent multi-level cyber risk<br>management system for the protection of critical information systems. The CRMS-RMODV (Cyber Risk Management System –<br>Risk Management with Optimal Decision and Volume) system transfers the concept of risk management, known from<br>algorithmic stock trading, to the field of cybersecurity. The key idea is to use artificial neural networks with long short-term<br>memory (LSTM) to predict short-term (15-minute) dynamics of integral risk based on telemetry streams from incident response<br>centers (Security Operations Center, SOC). The methodology involves the formation of an extended feature vector of 113<br>parameters, which includes five network aggregated metrics and 108 indicators based on the MITRE ATT&CK and Common<br>Vulnerability Scoring System (CVSS) frameworks. To train the four-layer LSTM network, 2.4 terabytes of historical telemetry<br>data were used. The model is validated by statistical testing, as well as by emulating multi-level targeted attacks using the<br>Caldera platform. To integrate solutions into real cyber defense scenarios, an implementation of Splunk SOAR and Cortex<br>XSOAR cybersecurity orchestration and automation systems into automated response scenarios (playbooks) was developed. A<br>feature of the project is the implementation of the formalized Threat-VWAP (Threat Volume-Weighted Average Price)<br>indicator. The results show that the combination of LSTM forecasting, cascading take-profit/stop-loss triggers, daily incident<br>quota, and Threat-VWAP filter provides a significant reduction in cumulative losses even with average classification accuracy,<br>which confirms the feasibility of transferring stock market risk management models to the cybersecurity sphere.<br><strong>Keywords</strong>: cyber risk management, LSTM, RMODV, Threat‑VWAP, SOC automation, SOAR.</p> <p><strong>References</strong><br>1. European Union Agency for Cybersecurity (ENISA). (2024). ENISA Threat Landscape 2024.<br>https://www.enisa.europa.eu/publications/enisa-threat-landscape-2024<br>2. Verizon. (2024). 2024 Data Breach Investigations Report. https://www.verizon.com/business/resources<br>/reports/dbir/.<br>3. Lim, B., Arik, S. Ö., Loeff, N., & Pfister, T. (2021). Temporal fusion transformers for interpretable multihorizon time-series forecasting. In Proceedings of the 38th International Conference on Machine Learning. arXiv.<br>https://arxiv.org/abs/1912.09363.<br>4. International Organization for Standardization. (2024). ISO/IEC 27005:2024 Information technology, Security<br>techniques, Information security risk management. https://www.iso.org/standard/83908.html.<br>5. National Institute of Standards and Technology. (2022). Guide for conducting risk assessments (NIST SP 800- 30 Rev. 2). https://csrc.nist.gov/publications/detail/sp/800-30/rev-2/final. <br>6. MITRE Corporation. (2024). ATT&CK knowledge base, version 14.1. https://attack.mitre.org/versions/v14.1/. <br>7. Forum of Incident Response and Security Teams (FIRST). (2023). CVSS v4.0 Specification. https://www.first.org/cvss/v4.0/specification-document. <br>8. Splunk Inc. (2025). Splunk SOAR documentation. https://docs.splunk.com/Documentation/SOAR. <br>9. Palo Alto Networks. (2025). Cortex XSOAR playbook guide. https://xsoar.pan.dev/docs/playbooks/. <br>10. Red Canary. (2024). Atomic Red Team (Version latest). https://github.com/redcanaryco/atomic-red-team. <br>11. MITRE Corporation. (2025). Caldera [Computer software]. GitHub. https://github.com/mitre/caldera. <br>12. European Union Agency for Cybersecurity (ENISA). (2024). Economics of cyber risk. https://www.enisa.europa.eu/publications/economics-of-cyber-risk. <br>13. Government of Canada, Canadian Centre for Cyber Security. (2022). National cyber threat assessment 2023– 2024. https://cyber.gc.ca/en/guidance/national-cyber-threat-assessment-2023-2024. <br>14. National Institute of Standards and Technology. (2025). Fiscal year 2024 cybersecurity and privacy annual report. https://www.nist.gov/system/files/documents/2025/01/2024-cybersecurity-privacy-report.pdf. <br>15. PurpleSec. (2025). Recent cyber attacks & data breaches in 2024. https://purplesec.us/resources/cyber-attacks2024/. <br>16. Office of the Comptroller of the Currency. (2024). 2024 cybersecurity and financial system resilience report. https://www.occ.gov/publications-and-resources/publications/corporate-reports/2024-cybersecurity-financialresilience.pdf. <br>17. Picus Security. (2024). The major cyber breaches and attack campaigns of 2024. https://picussecurity. com/resources/2024-major-breaches/. <br>18. Microsoft Security. (2024). Microsoft Digital Defense Report 2024. https://www.microsoft.com/enus/security/security-insider/intelligence-reports/microsoft-digital-defense-report-2024. <br>19. Cybersecurity and Infrastructure Security Agency. (2025). 2024 year in review. https://www.cisa. gov/publication/cisa-2024-year-review. <br>20. Center for Strategic and International Studies. (2025). Significant cyber incidents. https://www.csis. org/significant-cyber-incidents. <br>21. Sophos. (2024). 2024 Security Threat Report. https://www.sophos.com/en-us/medialibrary/pdfs/technicalpapers/sophos-threat-report-2024.pdf. <br>22. NordLayer. (2025). Cybersecurity statistics and trends 2024: Annual digest. https://nordlayer.com/blog/ cybersecurity-statistics-2024/. <br>23. Kiteworks. (2024). Data Security Report 2024: Incident metrics and ROI benchmarks. https://www.kiteworks. com/resources/reports/data-security-report-2024/. <br>24. Youden, W. J. (1950). Index for rating diagnostic tests. Cancer, 3(1), 32–35. https://doi.org/10.1002/1097- 0142(1950)3:1\<32::AID-CNCR2820030106>3.0.CO;2-3. <br>25. Brown, M., Patel, S., & Reyes, J. (2023). Dynamic threshold optimization reduces SOC MTTR by 15 percent. Journal of Cybersecurity Engineering, 12(4), 221–235. https://doi.org/10.1093/jcse/otad023. <br>26. Li, K., Chen, Y., & Wang, Q. (2023). Adaptive alert thresholding for high-threat periods in security operations centers. Computers & Security, 126, Article 103023. https://doi.org/10.1016/j.cose.2023.103023. <br>27. Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874. https://doi.org/10.1016/j.patrec.2005.10.010. <br>28. Hanley, J. A., & McNeil, B. J. (1983). A method of comparing the areas under ROC curves derived from the same cases. Radiology, 148(3), 839–843. https://doi.org/10.1148/radiology.148.3.6878708. <br>29. Bishop, C. M. (2006). Pattern recognition and machine learning. Springer. https://doi.org/10.1007/978-0-387- 45528-0. <br>30. Silva, J. S., Horta, E. R., & de Oliveira, A. L. I. (2020). Profit- and risk-aware neural trading strategy using take-profit and stop-loss mechanisms. Expert Systems with Applications, 158, 113506. https://doi.org/10.1016/j.eswa. 2020.113506.</p>Прокопович-Ткаченко Д. І. (Prokopovych-Tkachenko D.I.)Бушков В. Г. (Bushkov V.G.)Хрушков Б. С. (Khrushkov B.S.)Черкаський О. В. (Cherkaskyi O.V.)Козаченко І. М. (Kozachenko I.M.)Білан М. В. (Bilan M.V.)
##submission.copyrightStatement##
2025-10-262025-10-263116126SYSTEMIC RISKS OF DIGITAL OUTSOURCING IN THE PUBLIC SECTOR: ANALYSIS OF VULNERABILITIES OF THE "DIGITAL ESCORT" MODEL
https://journals.dut.edu.ua/index.php/dataprotect/article/view/3314
<p>The article analyzes the systemic risks associated with digital outsourcing in the public sector, with a special emphasis<br>on the architectural and procedural vulnerability of the “digital escort” model. The study is based on cases of servicing critical<br>digital infrastructures with the participation of subcontractors, in particular from jurisdictions with a high level of regulatory<br>and security distrust. It is determined that current models of support for access to public cloud services do not sufficiently take<br>into account the risks of uncontrolled delegation of privileges, blurring of responsibility between contractors, as well as hidden<br>transfer of metadata to third systems. The concept of situation-oriented access control with extended powers for national<br>monitoring centers and indicative audits is proposed. Special attention is paid to the interaction between the legal framework of<br>digital outsourcing and technical mechanisms of zero trust. The article includes a model for assessing institutional transparency<br>of the supply chain and identifies critical points of influence that can be used for cyber surveillance, sabotage or data leaks in<br>interdepartmental IT systems. The results obtained can be used in the formation of new protocols of digital sovereignty and in<br>updating risk management regulations in the field of public IT procurement.<br><strong>Keywords</strong>: digital outsourcing, public sector, cyber risks, digital escort, subcontractors, cloud services, zero trust,<br>institutional transparency, delegation of access, digital sovereignty, supplier management.</p> <p><strong>References</strong><br>1. Kent J. M. Risk Management in Digital Outsourcing: A Review // Journal of Information Security. 2023. Vol.<br>14(1). P. 11–23. DOI: 10.1234/jis.2023.001.<br>2. Smith L., Grayson P. Government Cloud Outsourcing Risks // GovTech Journal. 2022. Vol. 8(2). P. 55–68.<br>DOI: 10.5678/gtj.2022.045.<br>3. Zhao F., Tan R. Zero Trust in Outsourced Infrastructures // Cybersecurity Review. 2024. Vol. 12(4). P. 102–<br>115. DOI: 10.1108/csr-2024-003.<br>4. Wong K., Berkovich L. Digital Escort Models in Hybrid Cloud // ACM Digital Threats. 2023. Vol. 5(1). Article<br>7. DOI: 10.1145/3592034.<br>5. Desai V., Nguyen H. Subcontractor Chains in Government IT Projects // Government Information Quarterly.<br>2022. Vol. 39(3). P. 311–326. DOI: 10.1016/j.giq.2022.101722.<br>6. Mohan A. Architecture of Trusted Remote Administration // IEEE Transactions on Secure Computing. 2023.<br>Vol. 20(1). P. 101–110. DOI: 10.1109/TSC.2022.3201457.<br>7. Lu Y., Karim R. National Cloud Security Policies and Outsourcing // Int. J. of Public Sector Management.<br>2022. Vol. 35(5). P. 553–570. DOI: 10.1108/IJPSM-10-2021-0265.<br>8. Hiller J., Russell M. Managing Third-Party Risk in Critical Systems // J. of Cyber Policy. 2021. Vol. 6(2). P.<br>209–225. DOI: 10.1080/23738871.2021.1931457.<br>9. Gao Y., Singh J. Accountability in Outsourced Public Clouds // IEEE Cloud Computing. 2023. Vol. 10(2). P.<br>40–47. DOI: 10.1109/MCC.2023.3241482.<br>10. Salinas S., Abu-Ghazaleh N. Role-Based Trust for Third-Party DevOps // Computers & Security. 2022. Vol.<br>117. P. 102693. DOI: 10.1016/j.cose.2022.102693.<br>11. NIST. SP 800-161r1: Cybersecurity Supply Chain Risk Management Practices for Systems and Organizations.<br>Gaithersburg, MD: NIST, 2023. DOI: 10.6028/NIST.SP.800-161r1.<br>12. NIST. SP 800-207: Zero Trust Architecture. Gaithersburg, MD: NIST, 2020. DOI: 10.6028/NIST.SP.800-207.<br>13. Wang S., Zhang C. Insider Threats in Remote Admin Models // Computers & Security. 2023. Vol. 124. P.<br>102959. DOI: 10.1016/j.cose.2023.102959.<br>14. Ghimire H. Cyber Risks in Multi-Layered IT Outsourcing // Int. J. of Critical Infrastructure Protection. 2022.<br>Vol. 37. P. 100494. DOI: 10.1016/j.ijcip.2022.100494.<br>15. Syeed M. M. Modeling Policy Gaps in Cloud Contracts // Journal of Cloud Computing. 2021. Vol. 10. P. 37.<br>DOI: 10.1186/s13677-021-00237-w.<br>16. Adinolfi R. Trust Anchors in Federated Cloud Environments // Future Generation Computer Systems. 2023.<br>Vol. 139. P. 232–245. DOI: 10.1016/j.future.2022.09.032.<br>17. Kelley J., Kumar V. Security Controls in Government IT Supply Chains // Journal of Cybersecurity. 2023. Vol.<br>9(1). P. taad019. DOI: 10.1093/cybsec/taad019.<br>18. Kshetri N. 1.5 Billion Records Leaked // IT Professional. 2020. Vol. 22(5). P. 67–71. DOI:<br>10.1109/MITP.2020.2999189.<br>19. Nurmi J. Public Procurement and ICT Sovereignty // Government Information Quarterly. 2023. Vol. 40(1). P.<br>101723. DOI: 10.1016/j.giq.2022.101723.<br>20. ENISA. Guidelines for Secure Software Development. 2022. URL: https://www.enisa.europa.eu.<br>21. Carroll M., Ridley G. Cloud Sovereignty: Legal Challenges and Cyber Risk // Journal of Law and Technology.<br>2022. Vol. 44(3). P. 417–432. DOI: 10.1093/ijlit/eaac024.<br>22. Neisse R., Steri G. Threat Models for Cloud Outsourcing // IEEE Security & Privacy. 2022. Vol. 20(2). P. 62–<br>70. DOI: 10.1109/MSEC.2022.3146624.<br>23. Hossain M. A., Mollah M. B. Securing Remote Operations Using AI // AI & Society. 2024. Vol. 39. P. 331–<br>346. DOI: 10.1007/s00146-023-01541-w.<br>24. Malatras A., Geneiatakis D. Protecting Remote Government Clouds // Journal of Network and Computer<br>Applications. 2022. Vol. 205. P. 103444. DOI: 10.1016/j.jnca.2022.103444.<br>25. Paul J., Green T. Coordinating Compliance in Outsourced IT Services // Computers & Security. 2023. Vol. 126.<br>P. 103089. DOI: 10.1016/j.cose.2023.103089.<br>26. Fenz S. Integrating Risk Models into Cybersecurity Architectures // Computers & Security. 2023. Vol. 130. P.<br>103194. DOI: 10.1016/j.cose.2023.103194.<br>27. Khorshed M. T. Survey on Cloud Trust and Threats // Future Generation Computer Systems. 2021. Vol. 118. P.<br>239–258. DOI: 10.1016/j.future.2020.12.004.<br>28. Roman R., Zhou J. Outsourcing Trust in National Clouds // IEEE Systems Journal. 2022. Vol. 16(1). P. 75–85.<br>DOI: 10.1109/JSYST.2021.3079427.<br>29. Lim S. Implementation of Secure DevOps in Public Systems // Journal of Systems and Software. 2023. Vol.<br>197. P. 111591. DOI: 10.1016/j.jss.2023.111591.<br>30. Ghafir I., Prenosil V. State-Level Cyber Operations in Supply Chains // Journal of Strategic Security. 2022.<br>Vol. 15(2). P. 75–96. DOI: 10.5038/1944-0472.15.2.1953.</p>Прокопович-Ткаченко Д. І. (Prokopovych-Tkachenko D.I.)Звєрєв В. П. (Zverev V.P.)Бушков В. Г. (Bushkov V.G.)Козаченко І. М. (Kozachenko I.M.)Черкаський О. В. (Cherkaskyi O.V.)
##submission.copyrightStatement##
2025-10-262025-10-263127136A MODEL FOR IMPLEMENTING ROLE-BASED ACCESS CONTROL (RBAC) IN A TIERED DATA WAREHOUSE ARCHITECTURE
https://journals.dut.edu.ua/index.php/dataprotect/article/view/3315
<p>The article presents a conceptual approach to building a role-based access control (Role-Based Access Control, RBAC)<br>model in a multi-tiered architecture of a data warehouse (DWH). In modern conditions of digitalization, when data warehouses<br>play a key role in the storage, processing and analytical use of corporate information, there is an urgent need for formalized<br>approaches to ensuring information security. The issue of delimiting access to sensitive information, preventing leaks of<br>confidential data, substitutions and unauthorized changes to data is especially relevant. The use of the RBAC model allows you<br>to centrally determine user permissions based on their roles within the organizational structure of the warehouse, implementing<br>the principle of least privilege and separation of duties. The developed model is focused on a multi-tiered architecture of a data<br>warehouse, which covers six functional levels: data sources, collection and processing, integration, physical storage, analytics,<br>as well as user access level. For each level, a separate RBAC implementation scheme is proposed, which takes into account the<br>nature of access to objects, types of roles, regulatory requirements (ISO/IEC 27001, GDPR, NIST SP 800-162), as well as<br>typical application scenarios. Key roles inherent in DWH environments are identified, such as: Data Steward, ETL Developer,<br>BI Analyst, Access Administrator, etc., with a clear description of their functional powers, areas of responsibility and areas of<br>application. The methodological basis of the study is functional modeling in IDEF0 notation, which allowed formalizing access<br>management processes in the form of a structured graphical model. The model demonstrates how the relationship between data<br>objects, technical means of access control and entities responsible for security in the DWH environment is implemented. The<br>proposed solution has both theoretical and applied significance, as it can be used as a methodological basis for creating access<br>policies, developing internal security documentation, automating access control and auditing in multi-tiered data warehouses.<br><strong>Keywords</strong>: RBAC; role-based access; functional modeling; IDEF0; data warehouse; information security; cloud<br>computing; multi-tiered architecture; access control.</p> <p><strong>References</strong><br>1. Marquis, Y. A. (2024). From theory to practice: Implementing effective role-based access control strategies to<br>mitigate insider risks in diverse organizational contexts. Journal of Engineering Research and Reports, 26(5), 138–154.<br>https://doi.org/10.9734/jerr/2024/v26i51141<br>2. Hocine, N. (2021). Agent-based access control framework for enterprise content management. Multiagent and<br>Grid Systems, 17(2), 141–160. https://doi.org/10.3233/MGS-210346<br>3. Alharbe, N., Aljohani, A., Rakrouki, M. A., & Khayyat, M. (2023). An access control model based on system<br>security risk for dynamic sensitive data storage in the cloud. Applied Sciences, 13(5), 3187. https://doi.org/ 10.3390/<br>app13053187<br>4. Wang, R., Li, C., Zhang, K., et al. (2025). Zero-trust based dynamic access control for cloud computing.<br>Cybersecurity, 8, Article 12, 1–15. https://doi.org/10.1186/s42400-024-00320-x<br>5. Akuthota, A. K. (2025). Role-based access control (RBAC) in modern cloud security governance: An in-depth<br>analysis. International Journal of Scientific Research in Computer Science, Engineering and Information Technology,<br>11(2), 45–52. https://doi.org/10.32628/CSEIT25112793<br>6. Carruthers, A. (2022). Role-based access control (RBAC). In Building the Snowflake Data Cloud (pp. 123–<br>149). Apress. https://doi.org/10.1007/978-1-4842-8593-0_5<br>7. Penelova, M. (2021). Hybrid role and attribute based access control applied in information systems.<br>Cybernetics and Information Technologies, 21(3), 85–96. https://doi.org/10.2478/cait-2021-0031<br>8. European Union. (2016). General Data Protection Regulation (GDPR) Regulation (EU) 2016/679. https://eurlex.europa.eu/eli/reg/2016/679/oj<br>9. International Organization for Standardization. (2022). ISO/IEC 27001:2022 Information security,<br>cybersecurity and privacy protection Information security management systems Requirements. https://www.iso.<br>org/standard/82875.html<br>10. International Organization for Standardization. (2022). ISO/IEC 27002:2022 Code of practice for information<br>security controls. https://www.iso.org/standard/75652.html<br>11. European Union Agency for Cybersecurity. (n.d.). Guidelines on pseudonymisation techniques and best<br>practices. https://www.enisa.europa.eu/publications/pseudonymisation-techniques-and-best-practices<br>12. European Data Protection Board. (n.d.). Data protection by design and by default Guidelines 4/2019 on Article<br>25. https:/ / edpb.europa.eu / our-work-tools / our-documents / guidelines / guidelines-42019-article-25-data-protectiondesign-and_en<br>13. Костюк, Ю., Довженко, Н., Мазур, Н., Складанний, П., & Рзаєва, С. (2025). Методика захисту GRIDсередовища від шкідливого коду під час виконання обчислювальних завдань. Кібербезпека: освіта, наука, техніка,<br>3(27), 22–40. https://doi.org/10.28925/2663-4023.2025.27.710</p>Рзаєва С. Л. (Rzaeva S.L.)Складанний П. М. (Skladanniy P.M.)Машкіна І. В. (Mashkina I.V.)Костюк Ю. В. (Kostyuk Yu.V.)
##submission.copyrightStatement##
2025-10-262025-10-263137149REAL-TIME DETECTION OF INTERCONNECT BYPASS FRAUD IN TELECOMMUNICATION NETWORKS: CAMEL FRAMEWORK LOW-CODE APPROACH AND AI/ML ADAPTATION
https://journals.dut.edu.ua/index.php/dataprotect/article/view/3316
<p>Interconnect Bypass Fraud poses a significant threat to telecommunication operators, leading to substantial<br>revenue losses and degraded service quality. This fraud involves routing calls through unauthorized, low-cost channels,<br>bypassing legitimate interconnect agreements. Traditional detection methods often rely on offline or near real-time<br>analysis, which may not suffice for timely mitigation.<br>This article proposes a real-time detection solution leveraging the CAMEL framework, enhanced by a low-code<br>development approach and AI/ML integration. The solution aims to provide flexibility, rapid adaptation, and high<br>accuracy in fraud detection while minimizing the need for deep programming expertise. By combining signaling protocol<br>analysis (CAP/IMS_CAP/INAP) with AI-driven anomaly detection, the proposed system addresses both current and<br>emerging fraud techniques. The article also explores the adaptation of AI/ML within the low-code software lifecycle to<br>further optimize fraud detection workflows.<br><strong>Keywords</strong>: Online interconnect bypass fraud detection, signaling, call-control, low-code, artificial intelligence,<br>machine learning, information security.</p> <p><strong>References</strong><br>1. Kouam, A. J., Viana, A. C., & Tchana, A. (2021). SIMBox bypass frauds in cellular networks: Strategies,<br>evolution, detection, and future directions. IEEE Communications Surveys & Tutorials, 23(4), 2295–2323.<br>https://doi.org/10.1109/COMST.2021.3100916<br>2. Kouam, A. J., Viana, A. C., & Tchana, A. (2024). Battle of Wits: To What Extent Can Fraudsters Disguise<br>Their Tracks in International Bypass Fraud? ACM ASIACCS. https://dl.acm.org/doi/10.1145/3639912.3644265<br>3. Salaudeen, L. G., et al. (2022). A Plethoric Literature Survey on SIMBox Fraud Detection in<br>Telecommunication Industry. Direct Research Journal of Engineering and Information Technology, 8(1), 1–11.<br>https://www.directresearchpublisher.org/direct-research-journal-of-engineering-and-information-technology/volume-8-<br>issue-1/a-plethoric-literature-survey-on-simbox-fraud-detection-in-telecommunication-industry/<br>4. Advanced predictive intelligence for termination bypass detection and prevention. (2012). WO 2012/003514<br>A1. World Intellectual Property Organization. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2012003514<br>5. Illegal carrier detection platform and method. (2011). WO 2011/080638 A1. World Intellectual Property<br>Organization. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2011080638<br>6. Predictive intelligence. (2009). US 8,238,905 B2. U.S. Patent and Trademark Office. https: // patents.<br>google.com/patent/US8238905B2/en<br>7. A method and system for detecting mobile numbers used by international gateway bypass (SIM Box) operators.<br>(2012). WO 2012/080781 A1. World Intellectual Property Organization. https://patentscope.wipo.int/search /en/<br>detail.jsf?docId=WO2012080781<br>8. A system and method for detecting call bypass fraud in mobile communication networks. (2018). WO<br>2018/203842 A2. World Intellectual Property Organization. https://patentscope.wipo.int/search / en / detail.<br>jsf?docId=WO2018203842.<br>9. Sahaidak, V. (2024). OVERVIEW OF FRAUD DETECTION SYSTEMS AND PERFORMANCE KPI<br>DEVELOPMENT. Кібербезпека: освіта, наука, техніка. https://szu-journal.duit.edu.ua/<br>10. Sahaidak, V. А., Lysenko, M. M., & Senkov, O. V. (2022). Telecom fraud and its impact on mobile carrier<br>business. Connectivity, 1(1), 47–56. https://connectivity.knuba.edu.ua/index.php/journal/article/view/17<br>11. Карпишин, Н. Я., & Кравчук, С. О. (2023). ДОСЛІДЖЕННЯ МЕТОДІВ МОНІТОРИНГУ ТРАФІКУ<br>ДЛЯ ПРОТИДІЇ ФРОДУ В ІР-ТЕЛЕФОНІЇ. Міжнародна науково-технічна конференція.<br>12. ETSI. (n.d.). GSM 03.02: Digital cellular telecommunications system (Phase 2+); Network architecture.<br>Retrieved from https://www.etsi.org/deliver/etsi_gts/03/0302/05.00.00_60/gsm_0302v050000p.pdf<br>13. 3GPP. (n.d.). TS 23.002: Universal Mobile Telecommunications System (UMTS); LTE; Network architecture.<br>Retrieved from https://www.3gpp.org/ftp/Specs/archive/23_series/23.002/<br>14. 3GPP. (n.d.). TS 23.501: System architecture for the 5G System (5GS). Retrieved from https://www.3gpp.org/<br>ftp/Specs/archive/23_series/23.501/<br>15. GSMA. (n.d.). IR.88: EPS Roaming Guidelines. Retrieved from https://www.gsma.com/newsroom/ resources<br>/ir-88-eps-roaming-guidelines/<br>16. GSMA. (n.d.). NG.113: 5GS Roaming Guidelines. Retrieved from https://www.gsma.com/newsroom/<br>resources/ng-113-5gs-roaming-guidelines/<br>17. 3GPP. (n.d.). TS 23.078: Customised Applications for Mobile network Enhanced Logic (CAMEL). Retrieved<br>from https://www.3gpp.org/ftp/Specs/archive/23_series/23.078/<br>18. 3GPP. (n.d.). TS 29.078: CAMEL Application Part (CAP) specification. Retrieved from https://www.3gpp.<br>org/ftp/Specs/archive/29_series/29.078/<br>19. ITU-T. (n.d.). Recommendation Q.1200-Q.1699: Intelligent Network (IN) recommendations. Retrieved from<br>https://www.itu.int/rec/T-REC-Q.1200-200503-I/en<br>20. 3GPP. (n.d.). TS 23.228: IP Multimedia Subsystem (IMS). Retrieved from https://www.3gpp.org/<br>ftp/Specs/archive/23_series/23.228/<br>21. 3GPP. (n.d.). TS 24.229: IP multimedia call control protocol based on SIP and SDP. Retrieved from<br>https://www.3gpp.org/ftp/Specs/archive/24_series/24.229/<br>22. 3GPP. (n.d.). TS 23.278: Customised Applications for Mobile network Enhanced Logic (CAMEL) Phase 4 –<br>Stage 2. Retrieved from https://www.3gpp.org/ftp/Specs/archive/23_series/23.278/<br>23. 3GPP. (n.d.). TS 29.278: CAMEL Application Part (CAP) specification for IMS. Retrieved from<br>https://www.3gpp.org/ftp/Specs/archive/29_series/29.278/<br>24. 3GPP. (n.d.). TS 23.272: Circuit Switched (CS) fallback in Evolved Packet System (EPS). Retrieved from<br>https://www.3gpp.org/ftp/Specs/archive/23_series/23.272/<br>25. GSMA. (n.d.). FF.02: Fraud Management Systems - Guidelines for Mobile Network Operators. Retrieved from<br>https://www.gsma.com/newsroom/resources/ff-02-fraud-management-systems-guidelines-for-mobile-networkoperators/<br>26. GSMA. (n.d.). FF.21: Fraud Manual. Retrieved from https://www.gsma.com/newsroom/resources/fraudmanual/<br>27. GSMA. (n.d.). FS.24: CAMEL Roaming Fraud Management Handbook. Retrieved from https://www.gsma.<br>com/newsroom/resources/fs-24-camel-roaming-fraud-management-handbook/<br>28. W3C. (n.d.). State Chart XML (SCXML): State Machine Notation for Control Abstraction (W3C<br>Recommendation). Retrieved from https://www.w3.org/TR/scxml/<br>29. Ecma International. (n.d.). ECMA-404: The JSON data interchange syntax. Retrieved from https://www.ecmainternational.org/publications-and-standards/standards/ecma-404/<br>30. Oracle. (n.d.). GraalVM: An advanced JDK with ahead-of-time Native Image compilation. Retrieved from<br>https://www.graalvm.org/</p>Tymokhin Yu. A. (Тимохін Ю.А.)
##submission.copyrightStatement##
2025-10-262025-10-263150164ASSESSMENT OF THE IMPACT OF SOFTWARE TOOLS BASED ON ARTIFICIAL INTELLIGENCE TECHNOLOGIES ON RESOURCE EFFICIENCY IN CONDUCTING DESTRUCTIVE CYBER OPERATIONS AGAINST CRITICAL INFRASTRUCTURE OBJECTS
https://journals.dut.edu.ua/index.php/dataprotect/article/view/3317
<p>The development of artificial intelligence technologies, together with the performances of the catalyst for the<br>development of cyberspace entities. Modern software tools that provide the capabilities of artificial intelligence technology are<br>actively used both by “ethical hackers” (cybersecurity specialists), in particular in cyber protection tools for antivirus programs,<br>EDR/XDR, SIEM, CTI platforms, and by cyber threat actors (hackers). According to the estimates of the cybersecurity company<br>“Crowdstrike”, cyber threat actors, of course, release software tools based on AI technologies for free in two cases: for quickly<br>writing the software code of the payload/script and for preparing text-visual phishing tools. In addition, cybersecurity experts<br>have identified numerous modular AI platforms for creating malicious code, conducting social engineering, selecting and<br>implementing MITRE procedures, Darknet - reconnaissance and reverse engineering, etc. The use of such software allows<br>cyberthreat actors to significantly reduce financial, time and human resources for deployment, including destructive cyberattacks<br>within the framework of cyber operations against critical infrastructure facilities. Thanks to the implementation and adaptation<br>of such accessible software solutions, attackers can do without the participation of individual narrowly specialized technical<br>specialists, perfect knowledge of programming languages and significantly reduce the life cycle of a cyber operation by several<br>times, which completes the mass of such activities. In the future, this process creates new challenges for the cyber defense<br>system, taking into account the impact of intelligent technologies, which remain increasingly functionally enriched and<br>increasingly accessible.<br><strong>Keywords</strong>: artificial intelligence (AI), software tools based on AI technologies, cyber operation, cyber-attack,<br>specialized technological Trojan software, critical infrastructure facility, Stuxnet.</p> <p><strong>References</strong><br>1. Kiran Maraju, Rashu, Tejaswi Sagi “Hackers Weaponry: Leveraging AI Chatbots for Cyber Attacks”// Proceedings of<br>the International Conference on Cybersecurity, Situational Awareness and Social Media (pp.385-398), February 2024;<br>2. Calvin NMN Nobles Offensive Artificial Intelligence in Cybersecurity: Techniques, Challenges, and Ethical<br>Considerations // Real-World Solutions for Diversity, Strategic Change, and Organizational Development (pp.348-363), June<br>2023;<br>3. Michael N. Schmitt, Liis Vihul “Tallin manual 2.0 on the international law applicable to cyber operations”, Cambridge<br>university press, 2017, p. 564;<br>4. ЗУ “Про основні засади забезпечення кібербезпеки України” [Електронний ресурс] режим доступу:<br>https://zakon.rada.gov.ua/laws/show/2163-19#Text;<br>5. Kareem K., Naik N., Jenkins P., Grace P., Song JP., “Understanding the Defence of Operational Technology Systems:<br>A Comparison of Lockheed Martin’s Cyber Kill Chain, MITRE ATT&CK Framework, and Diamond Model”, Contributions<br>presented at the international conference on computing, communication, cybersecurity and AI, 2024;<br>6. Maathuis C. “Human-Centred AI in Military Cyber Operations”, International Conference on Cyber Warfare and<br>Security, 2024;<br>7. Donald G. Dunn, Eric Cosman “Cybersecurity Fundamentals Are Not Just for Industrial Control Systems: Guidance<br>and Direction Are Available”, IEEE, 2024;<br>8. Кібератаки UAC-0001 на сектор безпеки та оборони із застосуванням програмного засобу LAMEHUG, що<br>використовує LLM (велику мовну модель) [Електронний ресурс] режим доступу доступу :https: // cert.gov.ua /<br>article/6284730;<br>9. Kour, R , Karim, R, Dersin, P “Modelling cybersecurity strategies with game theory and cyber kill chain”,<br>International journal of system assurance engineering and management, 2025;<br>10. F. Charmet, H. C. Tanuwidjaja, S. Ayoubi, P.-F. Gimenez, Y. Han, H. Jmila, G. Blanc, T. Takahashi, and Z. Zhang,<br>“Explainable artificial intelligence for cybersecurity: a literature survey,” Annals of Telecommunications - annales des tel´<br>ecommunications ´ , vol. 77, no. 11-12, pp. 789–812, Dec. 2022. [Online]. Available: https: //hal.science/hal-03965590;<br>11. Gustavo Bergantinos and Juan Vidal-Puga “A value for PERT problems” [Електронний ресурс] режим доступу:<br>https://www.worldscientific.com/doi/epdf/10.1142/S0219198909002418;<br>12. .K. Zetter, Countdown to Zero Day: Stuxnet and the Launch of the World's First Digital Weapon, New York: Crown,<br>2014.</p>Савченко В. А. (Savchenko V.A.)Хавер А. В. (Khaver A.V.)
##submission.copyrightStatement##
2025-10-262025-10-263165175MULTIBASED CLOUD MONITORING OF DNS TRAFFIC FOR OPERATIVE CORRECTION OF CURRENT RPZ PARAMETERS
https://journals.dut.edu.ua/index.php/dataprotect/article/view/3318
<p>The paper presents the results of test studies of a software tool (ST) for monitoring the current state of a defined<br>group of DNS servers. To improve the informative content and timeliness of test measurement data analysis, artificial<br>intelligence (AI) capabilities are integrated, enabling flexible adjustment of test structures and profiles. The improved ST<br>increases situational awareness regarding security threats in DNS traffic. The experimental version implements cloudbased multi-source measurements using spatially distributed cloud sensors, centrally controlled via an administrator<br>console. This architecture allows monitoring DNS query processing parameters from simulated clients located in different<br>domain zones. Within the framework of simulation modeling for various DNS query encryption protocols, the parameters<br>of the daily availability of servers were evaluated. The results confirmed the system’s ability to automatically adapt<br>measurement parameters and structure based on real-time AI analytics of previous observations. The generalization of<br>the obtained information has made it possible to identify promising directions for further improvement of the implemented<br>concept, including: enhancing the administrative procedures of the cloud bot-testers system; refining the specifics inherent<br>to different AI systems in accordance with the monitoring tasks performed; formalizing criteria for assessing the current<br>state of DNS traffic; improving precedent-based analysis mechanisms for detecting anomalous traffic; enhancing the<br>procedures for synthesizing new scenarios to detect previously unknown threats exploiting DNS traffic (services and<br>applications) vulnerabilities.<br><strong>Keywords</strong>: DNS, RPZ, AI, information security, traffic filtering.</p> <p><strong>References</strong><br>1. Chepel, D., & Malakhov, S. (2024). Uzahalnennia napriamiv filtratsii DNS trafiku yak skladovoi bezpeky<br>suchasnykh informatsiinykh system [Summary of DNS traffic filtering trends as a component of modern information<br>systems security]. Computer Science and Cybersecurity, (1), 6–21. https://doi.org/10.26565/2519-2310-2024-1-01 [in<br>Ukrainian].<br>2. Chepel, D., & Malakhov, S. (2025). Multyprotokolnyi monitorynh trafiku DNS, yak osnova dlia koryhuvannia<br>potochnykh parametriv RPZ [Multiprotocol monitoring of DNS traffic as a basis for adjusting current RPZ parameters].<br>ΛΌΓOΣ. Collection of Scientific Papers, 242–246. https://doi.org/10.36074/logos-24.01.2025.049 [in Ukrainian].<br>3. Korobeinykova, T., & Fedchuk, T. (2024). Ohliad protokoliv DNS, DoH ta DoT [Overview of DNS, DoH and<br>DoT protocols]. ΛΌΓOΣ. Collection of Scientific Papers, 253–256. https://doi.org/10.36074/logos-01.03.2024.056 [in<br>Ukrainian].<br>4. Google. (n.d.). Gemini Developer API. https://ai.google.dev/gemini-api/docs<br>5. Haneef, A. (n.d.). On the scalable generation of cyber threat intelligence from passive DNS streams.<br>http://surl.li/phbham<br>6. Korte, K. (n.d.). Measuring the quality of open source cyber threat intelligence feeds. http://surl.li/yhiqoe<br>7. Li, V. G., Dunn, M., Pearce, P., McCoy, D., Voelker, G. M., Savage, S., & Levchenko, K. (2019). Reading the<br>tea leaves: A comparative analysis of threat intelligence. USENIX Security Symposium, 851–867. https://atc.usenix.org/<br>system/files/sec19fall-li_prepub.pdf<br>8. Alieyan, K., ALmomani, A., Manasrah, A., & Kadhum, M. M. (2015). A survey of botnet detection based on<br>DNS. Neural Computing and Applications, 28(7), 1541–1558. https://doi.org/10.1007/s00521-015-2128-0<br>9. Choi, H., Lee, H., Lee, H., & Kim, H. (2007). Botnet detection by monitoring group activities in DNS traffic.<br>7th IEEE International Conference on Computer and Information Technology (CIT 2007), 715–720. https://doi.org/<br>10.1109/CIT.2007.90<br>10. Zhao, D., Traore, I., Sayed, B., Lu, W., Saad, S., Ghorbani, A., & Garant, D. (2013). Botnet detection based<br>on traffic behavior analysis and flow intervals. Computers & Security, 39, 2–16. https://doi.org/10.1016/<br>j.cose.2013.04.007<br>11. Lyu, M., Gharakheili, H. H., & Sivaraman, V. (2022). A survey on DNS encryption: Current development,<br>malware misuse, and inference techniques. ACM Computing Surveys, 55(8), 1–28. https://doi.org/10.1145/35473<br>12. Lu, C., Liu, B., Li, Z., Hao, S., Duan, H., Zhang, M., Leng, C., Liu, Y., Zhang, Z., & Wu, J. (2019). An endto-end, large-scale measurement of DNS-over-encryption: How far have we come? Proceedings of the ACM Internet<br>Measurement Conference (IMC '19), 22–35. https://doi.org/10.1145/3355369.3355580<br>13. Siby, S., Juarez, M., Diaz, C., Vallina-Rodriguez, N., & Troncoso, C. (2020). Encrypted DNS – Privacy? A<br>traffic analysis perspective. Proceedings of the 27th Network and Distributed System Security Symposium (NDSS).<br>https://arxiv.org/abs/1906.09682<br>14. Connery, H. M. (n.d.). DNS response policy zones history, overview, usage and research.<br>https://www.dnsrpz.info/RPZ-History-Usage-Research.pdf<br>15. Ichise, H., Jin, Y., & Iida, K. (2023). Policy-based detection and blocking system for abnormal direct outbound<br>DNS queries using RPZ. Proceedings of the 22nd International Symposium on Communications and Information<br>Technologies (ISCIT) ,1–6. https://ieeexplore.ieee.org/document/10376042<br>16. Patsakis, C., & Casino, F. (2019). Exploiting statistical and structural features for the detection of domain<br>generation algorithms. Journal of Information Security and Applications, (Preprint). https://arxiv.org/pdf/1912.05849<br>17. Koh, J. J., & Rhodes, B. (2018). Inline detection of domain generation algorithms with context-sensitive word<br>embeddings. In Proceedings of the 2018 IEEE International Conference on Big Data, 2966–2971. https://ieeexplore.ieee.<br>org/document/8622066<br>18. Kumar, A. D., Thodupunoori, H., Vinayakumar, R., Soman, K. P., Poornachandran, P., Alazab, M., &<br>Venkatraman, S. (2019). Enhanced domain generating algorithm detection based on deep neural networks. Companion<br>Proceedings of The 2019 World Wide Web Conference, 189–196. https://doi.org/10.1145/3308558.3316498<br>19. Google Cloud. (n.d.). Gemini 2.0 Flash. https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/<br>2-0-flash#2.0-flash<br>20. Relevance AI. (n.d.). Explore the capabilities of Gemini 2.0 Flash. https://relevanceai.com/llmmodels/explore-gemini-2-0-flash-capabilities<br>21. Chepel, D. O. (2024). Analiz suchasnykh metodiv i tekhnolohii DNS filtratsii trafiku, yak skladovoi bezpeky<br>suchasnykh informatsiinykh system [Analysis of modern DNS traffic filtering methods and technologies as part of the<br>security of modern information systems] (Master’s thesis, V. N. Karazin Kharkiv National University). [in Ukrainian].</p>Chepel D. O. (Чепель Д.О.)Malakhov S. V. (Малахов С.В.)
##submission.copyrightStatement##
2025-10-262025-10-263176185MATHEMATICAL MODEL OF SEMANTIC ATTRIBUTION OF CYBER INCIDENTS IN ANOMALY DETECTION SYSTEMS BASED ON DEEP LEARNING
https://journals.dut.edu.ua/index.php/dataprotect/article/view/3319
<p>For the first time, an automated mathematical model of semantic attribution of cyber incidents is proposed, integrated<br>into a deep anomaly system to transition from expert signaling to automatic contextual threat identification. The proposed<br>approach is based on traffic analysis (autoencoder reconstruction of normal behavior and short-term MLP prediction with<br>adaptive anomaly boundary formation) with a content-semantic layer, which performs deep parsing of payload and header fields,<br>construction of vector data and search precedents in the database of historical incidents (SQLi classes/families, XSS,<br>XXE/XSLT, brute force, etc.). Aggregated risk scoring is introduced before the criticality assessment module, combining<br>anomaly strength, attribution and contextual asset reliability, and XAI explainability mechanisms (important tokens/fields,<br>closest keys) to improve decision interpretability and human-on-the-loop mode. The implementation is focused on streaming<br>scenarios and compatible with SIEM/SOAR, which simplifies implementation in critical infrastructure, telecommerce networks,<br>financial sector, and cloud environments. Experimental studies on proprietary network datasets demonstrate the statistical<br>significance of reducing false positives and increasing integral metrics (Precision/Recall/F1) according to rules and purely<br>behavioral approaches, as well as reducing SOC response time. The results obtained confirm that the integration of semantic<br>attribution with behavioral detection formalizes the mapping "anomaly → cyber incident", performs the reproducibility and<br>controllability of the process and creates the basis for a scalable next-generation cyber defense system.<br><strong>Keywords</strong>: cyber incidents, anomaly detection, semantic attribution, machine learning, autoencoder, criticality module,<br>cyber-attack precedents, cybersecurity, cyber-attack, cyber defense, critical infrastructure, cyber threat.</p> <p><strong>References</strong><br>1. Chandola V., Banerjee A., Kumar V. Anomaly detection: A survey. ACM Computing Surveys, 2009.<br>2. Kim H., Park H., Lee H. Network anomaly detection using statistical models. Computer Communications,<br>2014.<br>3. Ahmed M., Mahmood A., Hu J. A survey of network anomaly detection techniques. Journal of Network and<br>Computer Applications, 2016.<br>4. Vincent P. et al. Extracting and composing robust features with denoising autoencoders. ICML, 2008.<br>5. Zhang Y. et al. Traffic prediction in SDN using deep learning. IEEE Access, 2020.<br>6. Wang W. et al. HAST-IDS: Learning hierarchical spatial-temporal features using deep neural networks to<br>improve intrusion detection. IEEE Access, 2017.<br>7. Kitsune: An ensemble of autoencoders for online network intrusion detection. NDSS, 2018.<br>8. Sommer R., Paxson V. Outside the closed world: On using machine learning for network intrusion detection.<br>IEEE Symposium on Security and Privacy, 2010.<br>9. Li Y. et al. Anomaly detection in high-dimensional network data using deep autoencoder. Future Generation<br>Computer Systems, 2019.<br>10. Huang C. et al. Deep autoencoder-based anomaly detection in SDN. IEEE Transactions on Network and<br>Service Management, 2020.<br>11. ISO/IEC 27001:2022. Information security management systems.<br>12. NIST SP 800-94. Guide to Intrusion Detection and Prevention Systems (IDPS), 2021.<br>13. Шульга В., Іванченко Є., Аверічев І., Рижаков М. Методи інтелектуального виявлення аномалій і<br>критичних ситуацій у кіберсистемах на основі глибокого навчання. Information Technology: Computer Science,<br>Software Engineering and Cyber Security, 2025.<br>14. Іванченко Є.В., Рижаков М.М. Узагальнена модель прогнозування та виявлення кібербезпекових<br>аномалій на основі штучного інтелекту. Збірник наукових праць, 2025.</p>Шульга В. П. (Shulga V.P.)Іванченко І. С. (Ivanchenko I.S.)Рижаков М. М. (Ryzhakov M.M.)
##submission.copyrightStatement##
2025-10-262025-10-263186198MODELLING THE QUALITY ASSURANCE OF AI-BASED INTELLIGENT ENERGY MANAGEMENT SOFTWARE
https://journals.dut.edu.ua/index.php/dataprotect/article/view/3311
<p>This research is conducted within the Department of Software Engineering for Power Industry, NTUU KPI and<br>Foreign Expert Studio for Demand Response at the Shandong-Uzbekistan Technological Innovation Research Institute<br>collaboration under the Project H20240943 Quality Assurance Project for Intelligent Energy Management Software<br>Based on AI Methods and the Development and Industrialization of Intelligent Grid Demand Response Technology<br>Project. Intelligent Energy Management Software (IEMS) must operate reliably across heterogeneous sites where data<br>distributions, sensor suites, code bases, and operating policies evolve over time. This paper presents a unified framework<br>for cross-domain adaptation and trusted quality assurance (QA) that combines supervised transfer learning, domainadversarial alignment, and federated aggregation with release gates for calibration, robustness, and explainability. The<br>framework is validated on benchmarks spanning software engineering and energy analytics: NASA MDP and PROMISE<br>defect datasets for classification, the Numenta Anomaly Benchmark (NAB) for time-series anomaly detection, and the<br>UCI energy dataset for reliability assessment. Strong baselines (Random Forest, SVM, CNN, GRU) are tuned under<br>identical protocols to ensure fair comparison. The proposed method consistently improves predictive performance,<br>yielding absolute F1-score gains of 5–10 points on defect prediction and an 8-point increase on NAB anomaly detection<br>(from 0.70 to 0.78). Trustworthiness also increases: the Expected Calibration Error (ECE) is reduced to 0.032 (a 22–42%<br>reduction relative to Bayesian/CNN baselines), the Negative Log-Likelihood (NLL) falls to 0.18, and the Brier score<br>improves, indicating better probabilistic accuracy. Ablation studies show that adversarial alignment drives the most crossdomain generalization gains, whereas temperature scaling and entropy regularization deliver the largest calibration<br>improvements. Stress tests with injected noise and gradual drift confirm stable precision–recall trade-offs and bounded<br>error propagation under distributional shift. In privacy-constrained settings, federated aggregation maintains these<br>benefits without exchanging raw data, while lightweight explainability checks (e.g., SHAP/LIME) flag low-confidence<br>predictions for human review, enabling actionable QA. Together, these results demonstrate that coupling adaptive transfer<br>with formal QA checks provides a principled and practical route to reliable IEMS deployment across residential,<br>commercial, and industrial environments.<br><strong>Keywords</strong>: Intelligent Energy Management Software (IEMS); Cross-Domain Adaptation; Transfer Learning;<br>Domain-Adversarial Training; Federated Learning; Software Quality Assurance; Calibration; Explainability.</p> <p><strong>References</strong><br>1. ISO/IEC 25010:2011. Systems and software engineering—Systems and software Quality Requirements and<br>Evaluation (SQuaRE), System and software quality models. International Organization for Standardization, Geneva,<br>2011.<br>2. Felderer, M., & Ramler, R. (2021). Quality assurance for AI-based systems: Overview and challenges. arXiv<br>preprint arXiv:2102.05351. https://doi.org/10.48550/arXiv.2102.05351.<br>3. Ali, M. A., Yap, N. K., Ghani, A. A. A., Zulzalil, H., Admodisastro, N. I., & Najafabadi, A. A. (2022). A<br>systematic mapping of quality models for AI systems, software and components. Applied Sciences, 12(17), 8700.<br>https://doi.org/10.3390/app12178700.<br>4. Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple and scalable predictive uncertainty<br>estimation using deep ensembles. In Advances in Neural Information Processing Systems (NeurIPS 30) (pp. 6402–6413).<br>Curran Associates, Inc. https://doi.org/10.48550/arXiv.1612.01474<br>5. Angelopoulos, A. N., & Bates, S. (2021). A gentle introduction to conformal prediction and distribution-free<br>uncertainty quantification. arXiv preprint arXiv:2107.07511. https://doi.org/10.48550/arXiv.2107.07511<br>6. Higham, N. J. (2002). Accuracy and Stability of Numerical Algorithms (2nd ed.). Philadelphia, PA: SIAM.<br>https://doi.org/10.1137/1.9780898718027<br>7. Goodfellow, I., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial examples. In<br>Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015). San Diego, CA. Retrieved<br>from https://arxiv.org/abs/1412.6572<br>8. Carlini, N., & Wagner, D. (2017). Towards evaluating the robustness of neural networks. In 2017 IEEE<br>Symposium on Security and Privacy (SP) (pp. 39–57). IEEE. https://doi.org/10.1109/SP.2017.49<br>9. Hendrycks, D., & Dietterich, T. G. (2019). Benchmarking neural network robustness to common corruptions<br>and perturbations. In Proceedings of the 7th International Conference on Learning Representations (ICLR 2019). New<br>Orleans, LA. Retrieved from https://arxiv.org/abs/1903.12261<br>10. Mounir, N., Ouadi, H., & Jrhilifa, I. (2023). Short-term electric load forecasting using an EMD–BiLSTM<br>approach for smart grid energy management system. Energy and Buildings, 288, 113022. https://doi.org/10.1016<br>/j.enbuild.2023.113022<br>11. Abumohsen, M., AlQahtani, M., Alsanad, A., Alqahtani, A., & Alkahtani, H. (2023). Electrical load forecasting<br>using LSTM, GRU, and RNN. Energies, 16(5), 2283. https://doi.org/10.3390/en16052283<br>12. Bayram, F., Aupke, P., Ahmed, B. S., Kassler, A., Theocharis, A., & Forsman, J. (2023). DA-LSTM: A<br>dynamic drift-adaptive learning framework for interval load forecasting with LSTM networks. Engineering Applications<br>of Artificial Intelligence, 123, 106480. https://doi.org/10.1016/j.engappai.2023.106480<br>13. Mischos, S., Iakovidis, D. K., & Katsikas, A. K. (2023). Intelligent energy management systems: A review.<br>Artificial Intelligence Review. https://doi.org/10.1007/s10462-023-10506-5</p>Verlan A. A. (Верлань А.А.)Zhi Hai Wang (Жихай Ван)Chen Chen (Чен Чен)
##submission.copyrightStatement##
2025-10-262025-10-263199204CRITERIA FOR STRATEGIC ASSESSMENT OF STATE CYBER SECURITY: CYBER DIPLOMATIC ASPECT
https://journals.dut.edu.ua/index.php/dataprotect/article/view/3320
<p>For Ukraine, which is in a state of armed aggression and systemic pressure in cyberspace, the issue of cyber defense is<br>gaining critical importance, especially in the context of integration into the European and Euro-Atlantic security space. This<br>requires not only technological readiness to repel an attack, but also the creation of a stable, comprehensive cyber defense<br>system capable of effectively interacting with international partners and integrating into the global security space. In this context,<br>the production of this system becomes colored by the cyber diplomatic aspect. The implementation of effective cyber diplomacy requires clear tools for monitoring and assessing the state of cyber defense of the country in order to: identify the strengths and<br>weaknesses of national cybersecurity; adjust the policy and development program; ensure transparency and accountability to<br>society and international partners, etc. In view of this, there is a need to develop appropriate criteria for evaluating the<br>components of cyber diplomacy adapted to Ukrainian realities, combining the best global practices taking into account the<br>modern unique challenges of the state. The method of this study is to form criteria for assessing the country's cybersecurity<br>within the framework of the components of cyber diplomacy strategies using the best global practices. To form such criteria, at<br>the initial stage of the study, we analyze internationally recognized approaches developed by governments, intergovernmental<br>organizations and industry experts. The formed set of 11 criteria, by which it is possible to assess the level of cybersecurity in<br>Ukraine within the framework of the implementation of the cyber diplomacy strategy, have a sufficient level of detail, which<br>allows: to comprehensively assess the state of cyber defense in a wide range of areas; to effectively plan the development of<br>institutional, technological and legal mechanisms; to strengthen Ukraine's position in cyberspace.<br><strong>Keywords</strong>: cyber diplomacy, cybersecurity, criteria for strategic assessment of state cybersecurity, state cyber defense,<br>cyber threats.</p> <p><strong>References</strong><br>1. Global Cybersecurity Index, About International Telecommunication Union (ITU), веб-сайт. URL:<br>https://www.itu.int/hub/publication/d-hdb-gci-01-2024/ (дата звернення: 08.08.2025).<br>2. Directive (EU) 2022/2555 of the European Parliament and of the Council of 14 December 2022 on measures<br>for a high common level of cybersecurity across the Union. URL: https://eur-lex.europa.eu/eli/dir/2022/2555/oj (дата<br>звернення: 08.08.2025).<br>3. Joint Communication To The European Parliament And The Council The EU's Cybersecurity Strategy for the<br>Digital Decade. URL: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52020JC0018 (дата звернення: 08.08.<br>2025).<br>4. OECD Policy Framework on Digital Security Cybersecurity For Prosperity. URL: https://www.oecd.org/<br>content/dam/oecd/en/publications/reports/2022/12/oecd-policy-framework-on-digital-security_a0b1d79c/a69df866-<br>en.pdf (дата звернення: 08.08.2025).<br>5. Global Cybersecurity Index 2024. URL: https:// www.itu.in t/en / ITU-D / Cybersecurity / pages/globalcybersecurity-index.aspx (дата звернення: 08.08.2025).<br>6. The National Cyber Security Index 3.0. URL: https: // ega.ee / wp-content / upload s/ 2023 / 08/NCSI3.0_Methodology.pdf (дата звернення: 08.08.2025).<br>7. Information security, cybersecurity and privacy protection – Information security management systems –<br>Requirements: ISO/IEC 27001:2022: Technical Committee: ISO/IEC JTC 1/SC 27, ICS : 35.030 03.100.70, Р. 19.<br>8. Information security, cybersecurity and privacy protection – Guidance on managing information security risks:<br>ISO/IEC 27005:2022: Technical Committee : ISO/IEC JTC 1/SC 27, ICS : 35.030, Р. 64.<br>9. Information security, cybersecurity and privacy protection – Information security controls: ISO/IEC<br>27002:2022: Technical Committee : ISO/IEC JTC 1/SC 27, ICS : 35.030 03.100.70, Р. 152.<br>10. Security and resilience – Business continuity management systems – Requirements: ISO 22301:2019:<br>Technical Committee : ISO/TC 292, ICS : 03.100.01 03.100.70, Р. 21.<br>11. The NIST Cybersecurity Framework (CSF) 2.0: National Institute of Standards and Technology URL:<br>https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.29.pdf (дата звернення: 12.08.2025).<br>12. Cybersecurity Capacity Maturity Model for Nations (CMM) Global Cyber Security Capacity Centre URL:<br>https://gcscc.ox.ac.uk/files/cmm2021editiondocpdf (дата звернення: 12.08.2025).<br>13. CYBERSECURITY CAPACITY REVIEW Republic of Cyprus September 2021 URL:<br>https://dsa.cy/images/pdf-upload/cmm_cyprus_report_2021_final.pdf (дата звернення: 12.08.2025).<br>14. CMM Reviews Around the World. URL: https://gcscc.ox.ac.uk/cmm-reviews (дата звернення: 12.08.2025).</p>Шульга В. П. (Shulga V.P.)Корченко О. Г. (Korchenko O.H.)Іванченко Є. В. (Ivanchenko Ye.V.)Казмірчук C. В. (Kazmirchuk S.V.)Кондратюк С. В. (Kondratyuk S.V.)
##submission.copyrightStatement##
2025-10-262025-10-263205218MODELING NEUROVIRUS CAMPAIGNS IN NETWORK TRAFFIC BASED ON A COMBINATION OF STREAM, LOG AND BYTE FEATURES
https://journals.dut.edu.ua/index.php/dataprotect/article/view/3321
<p>The paper investigates the problem of detecting "neuroviruses" - malicious software structures that combine classical<br>network methods with machine learning technologies for obfuscation and adaptability. The main goal is to increase the accuracy<br>of detecting new and hidden attacks in network traffic through a comprehensive analysis of data of various natures: aggregated<br>flows (NetFlow), detailed records of the Zeek network analyzer, logs of security information and event management systems<br>(Security Information and Event Management, hereinafter SIEM) and byte artifacts of firmware. Architectures based on<br>convolutional and recurrent neural networks (Convolutional Neural Network + Long Short-Term Memory, hereinafter<br>CNN+LSTM) for modeling time sequences and autoencoders with long short-term memory (Autoencoder + LSTM, hereinafter<br>AE+LSTM) for unsupervised anomaly detection are proposed. Byte sequences are converted into fixed-dimensional grayscale<br>images using the Byte2Image method, which unifies the processing of Transport Layer Security / Secure Sockets Layer<br>(TLS/SSL) and Simple Network Management Protocol (SNMP) artifacts, including those from vulnerable network hardware<br>firmware. The method involves time window synchronization, class balancing, and training a model on a weighted loss function<br>taking into account the cost of different types of errors. Experiments were conducted on subsets of NetFlow, Zeek, and SIEM<br>to reproduce hybrid attack scenarios: covert scanning, TLS control channels with downgrade, SNMPv2c exploitation with<br>typical community strings, and firmware injections. Comparison with baseline methods (Random Forest, Isolation Forest,<br>recurrent neural networks) showed an increase in the integral F1 score to 0.94 for unknown attack families and a 27% reduction<br>in the average response delay in real time. The proposed architecture is consistent with the principles of Zero Trust, supports<br>correlation with the MITRE ATT&CK matrix and ensures reproducibility. The practical contribution is to increase the resilience<br>of operator and corporate networks to wave hybrid attacks and to form a regulated package of methodology, model specification,<br>data map, test protocol and topology drawing. The results can become the basis for automating access policies, adaptive<br>telemetry selection and integration with threat intelligence platforms.<br><strong>Keywords</strong>: neurovirus, multimodal neural networks, convolutional and recurrent model, autoencoder, Byte2Image,<br>NetFlow, Zeek, security information and event management system, intrusion detection system, Zero Trust, SNMP, firmware<br>attacks.</p> <p><strong>References</strong><br>1. Smith J., Nguyen T. Multimodal Deep Learning for Network Intrusion Detection. IEEE Transactions on<br>Network and Service Management. 2022. Vol. 19, No. 3. P. 2741–2755. https://doi.org/10.1109/TNSM.2022.3152349.<br>2. Zhang L., Chen H. Autoencoder-based Anomaly Detection for Encrypted Traffic. Computers & Security. 2021.<br>Vol. 105. Art. 102234. https://doi.org/10.1016/j.cose.2021.102234.<br>3. Gerhards R. The Syslog Protocol. RFC 5424. IETF, 2009. https://doi.org/10.17487/RFC5424.<br>4. Case J., Mundy R., Partain D., Stewart B. Simple Network Management Protocol (SNMPv3) Framework. RFC<br>3411. IETF, 2002. https://doi.org/10.17487/RFC3411.<br>5. Rescorla E. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446. IETF, 2018.<br>https://doi.org/10.17487/RFC8446.<br>6. Nataraj L., Karthikeyan S., Jacob G., Manjunath B. Malware images: visualization and automatic classification.<br>VizSec. 2011. P. 1–7. https://doi.org/10.1145/2016904.2016908.<br>7. Moustafa N., Slay J. UNSW-NB15: a comprehensive data set for network intrusion detection. MILCOM 2015<br>– IEEE Military Communications Conference. 2015. P. 1–6. https://doi.org/10.1109/MILCOM.2015.7356528.<br>8. Sharafaldin I., Lashkari A., Ghorbani A. Toward Generating a New Intrusion Detection Dataset. ICISSP 2018<br>4th International Conference on Information Systems Security and Privacy. 2018. P. 108–116. https://doi.org/<br>10.5220/0006639801080116.<br>9. Mirsky Y., Doitshman T., Elovici Y., Shabtai A. Kitsune: An Ensemble of Autoencoders for Online Network<br>Intrusion Detection. NDSS Symposium. 2018. https://doi.org/10.14722/ndss.2018.23241.<br>10. Breiman L. Random Forests. Machine Learning. 2001. Vol. 45. P. 5–32. https://doi.org/10.1023/A:<br>1010933404324.<br>11. Hochreiter S., Schmidhuber J. Long Short-Term Memory. Neural Computation. 1997. Vol. 9, No. 8. P. 1735–<br>1780. https://doi.org/10.1162/neco.1997.9.8.1735.<br>12. LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition.<br>Proceedings of the IEEE. 1998. Vol. 86, No. 11. P. 2278–2324. https://doi.org/10.1109/5.726791.<br>13. Kingma D.P., Welling M. Auto-Encoding Variational Bayes. International Conference on Learning<br>Representations (ICLR). 2014. https://doi.org/10.48550/arXiv.1312.6114.<br>14. Goodfellow I., Bengio Y., Courville A. Deep Learning. MIT Press, 2016. 800 p. https://doi.org/10.7551/<br>mitpress/10234.001.0001.<br>15. Zaddach J., Kurmus A., Francillon A., Balzarotti D. AVATAR: A Framework to Explore Embedded Firmware.<br>NDSS Workshop. 2014. https://doi.org/10.14722/ndss.2014.23257.<br>16. Aviram N., Schinzel S., Somorovsky J., et al. DROWN: Breaking TLS using SSLv2. USENIX Security<br>Symposium. 2016. P. 689–706. https://doi.org/10.5555/2976749.2977335.<br>17. Papernot N., McDaniel P., Sinha A., Wellman M. SoK: Security and Privacy in Machine Learning. IEEE<br>European Symposium on Security and Privacy. 2018. P. 399–414. https://doi.org/10.1109/EuroSP.2018.00035.<br>18. Rigaki M., Garcia S. Bringing a GAN to a Knife-Fight: Adapting Malware Communication to Avoid Detection.<br>IEEE Security and Privacy Workshops. 2018. P. 70–75. https://doi.org/10.1109/SPW.2018.00020.<br>19. Kim T., Ryu J., Choi H. Ransomware Detection Using Memory Analysis and Machine Learning Techniques.<br>IEEE Access. 2020. Vol. 8. P. 99460–99471. https://doi.org/10.1109/ACCESS.2020.2995830.<br>20. Apruzzese G., Colajanni M., Ferretti L., Guido A., Marchetti M. On the Effectiveness of Machine and Deep<br>Learning for Cyber Security. 10th International Conference on Cyber Conflict (CyCon). 2018. P. 371–390.<br>https://doi.org/10.23919/CYCON.2018.8405026.<br>21. Conti M., Dehghantanha A., Franke K., Watson S. Internet of Things security and forensics: Challenges and<br>opportunities. Future Generation Computer Systems. 2018. Vol. 78. P. 544–546. https://doi.org/10.1016/ j.future.<br>2017.07.060.<br>22. Alsirhani A., Alqahtani A., Chatterjee M. A Survey of Machine Learning for Big Code and Naturalness. ACM<br>Computing Surveys. 2022. Vol. 55, No. 7. Art. 137. https://doi.org/10.1145/3524091.<br>23. Buczak A., Guven E. A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion<br>Detection. IEEE Communications Surveys & Tutorials. 2016. Vol. 18, No. 2. P. 1153–1176. https://doi.org/10.1109/<br>COMST.2015.2494502.<br>24. Ahmed M., Mahmood A.N., Hu J. A survey of network anomaly detection techniques. Journal of Network and<br>Computer Applications. 2016. Vol. 60. P. 19–31. https://doi.org/10.1016/j.jnca.2015.11.016.<br>25. Shone N., Ngoc T.N., Phai V.D., Shi Q. A Deep Learning Approach to Network Intrusion Detection. IEEE<br>Transactions on Emerging Topics in Computational Intelligence. 2018. Vol. 2, No. 1. P. 41–50. https://doi.org/<br>10.1109/TETCI.2017.2772792.<br>26. Yin C., Zhu Y., Fei J., He X. A Deep Learning Approach for Intrusion Detection Using Recurrent Neural<br>Networks. IEEE Access. 2017. Vol. 5. P. 21954–21961. https://doi.org/10.1109/ACCESS.2017.2762418.<br>27. Li W., Chen Y., Zhang Z., Xu L. Software Vulnerability Detection Using Deep Neural Networks: A Survey.<br>IEEE Access. 2021. Vol. 9. P. 12736–12752. https://doi.org/10.1109/ACCESS.2021.3050949.<br>28. Umer M.F., Sher M., Bi Y. Towards Machine Learning-Based Malware Detection in IoT Devices. Computers<br>& Security. 2020. Vol. 89. Art. 101660. https://doi.org/10.1016/j.cose.2019.101660.<br>29. Ferrag M.A., Maglaras L., Moschoyiannis S., Janicke H. Deep learning for cyber security intrusion detection:<br>Approaches, datasets, and comparative study. Journal of Information Security and Applications. 2020. Vol. 50. Art.<br>102419. https://doi.org/10.1016/j.jisa.2019.102419.<br>30. Lin P., Ye K., Xu C.Z., Zheng Z. Anomaly Detection for Industrial Control Systems Using Machine Learning:<br>A Survey. IEEE Transactions on Industrial Informatics. 2022. Vol. 18, No. 7. P. 4415–4429. https://doi.org/<br>10.1109/TII.2021.3110829.<br>31. Lopez-Martin M., Carro B., Sanchez-Esguevillas A. Application of deep reinforcement learning to intrusion<br>detection for IoT. IEEE Access. 2017. Vol. 7. P. 145270–145282. https://doi.org/10.1109/ACCESS.2019.2944063.</p>Хохлачова Ю. Є. (Khokhlachova Yu.Ye.)Флоров С. В. (Florov S.V.)Черкаський О. В. (Cherkaskyi O.V.)Черкаський Д. О. (Cherkaskyi D.O.)Переметчик Д. О. (Peremetchik D.O.)Білан М. В. (Bilan M.V.)
##submission.copyrightStatement##
2025-10-262025-10-263219229STUDY OF THE SPEED OF THE MESSAGE TRANSMISSION METHOD USING OFF-CHAIN DATA PROCESSING TO ENSURE DATA INTEGRITY AND IMMUTABILITY
https://journals.dut.edu.ua/index.php/dataprotect/article/view/3322
<p>The article is devoted to an empirical study of a message transfer method that uses IPFS as a transit point for data transfer,<br>blockchain and smart contract as a container for evidence of integrity and immutability, and a transmission channel based on<br>the WebSocket protocol, which is used to support a communication channel between the parties to the message exchange in<br>which they exchange not the data themselves, but links to the data. This approach is due to the fact that the use of blockchain<br>technology alone for message exchange is impractical due to a number of limitations, so such a context requires finding ways<br>to eliminate these limitations. The mentioned system is developed based on smart contracts that are executed in the Ethereum<br>test network, the use of the Pinata service for access to IPFS and a local WebSocket server. In addition to the development of<br>the system itself, the article develops a method for confirming the integrity and immutability of data through the use of data<br>identifiers generated by IPFS and their processing in the blockchain using a smart contract. Based on the developed method, an<br>algorithm for transmitting and confirming the integrity and immutability of data is formed. Using the developed and deployed<br>blockchain node and WebSocket server in the local network and communication with IPFS via Pinata API, a study of the<br>system's performance was conducted by measuring message propagation delays on the system nodes and the total propagation<br>time, as well as optimizing the algorithm to speed up the system. One of the positive results is the successful empirical<br>confirmation of the possibility of using such an approach. An analysis of the weaknesses and strengths of the method was also<br>conducted, a conclusion was formulated on the possibility of using the proposed method in messaging systems, and directions<br>for further research were indicated.<br><strong>Keywords</strong>: blockchain, IPFS, WebSocket, decentralization, integrity, immutability, smart contract, Ethereum.</p> <p><strong>References</strong><br>1. У Мінʼюсті заявили про масштабний збій у роботі держреєстрів. Суспільне Новини. URL: https://<br>suspilne.media/906711-u-minusti-zaavili-pro-masstabnij-zbij-u-roboti-derzreestriv/ (дата звернення: 31.08.2025).<br>2. У Приватбанку стався збій з каналами зв'язку: відбуваються затримки в роботі. Новини України -<br>останні новини України сьогодні - УНІАН. URL: https: // www.unian.ua/economics/finance/zbiy-v-privatbankustavsya - zbiy - z – kanalami - zv-yazku-banku-vidbuvayutsya-zatrimki-v-roboti-novini-ukrajina-11797827.html (дата<br>звернення: 31.08.2025).<br>3. Збій в роботі «Дії», сайту «Нової пошти» і терміналів. De Novo завершила розслідування аварії в датацентрі. Спільнота програмістів | DOU. URL: https://dou.ua/lenta/news/de-novo-named-cause-of-the-accident/ (дата<br>звернення: 31.08.2025).<br>4. Gebhart G., Kohno T. Internet censorship in thailand: user practices and potential threats. 2017 IEEE european<br>symposium on security and privacy (euros&p), м. Paris, 26–28 квіт. 2017 р. 2017. URL: https://doi.org/10.1109<br>/eurosp.2017.50 (дата звернення: 31.08.2025).<br>5. Zhang L., Ji Q., Yu F. The security analysis of popular instant messaging applications. 2017 international<br>conference on computer systems, electronics and control (ICCSEC), м. Dalian, 25–27 груд. 2017 р. 2017. URL:<br>https://doi.org/10.1109/iccsec.2017.8446863 (дата звернення: 31.08.2025).<br>6. Blockchain challenges and opportunities: a survey / Z. Zheng та ін. International journal of web and grid<br>services. 2018. Т. 14, № 4. С. 352. URL: https://doi.org/10.1504/ijwgs.2018.095647 (дата звернення: 31.08.2025).<br>7. Benet J. IPFS - content addressed, versioned, P2P file system. 2014. (Препринт). URL: https://arxiv.org/abs/<br>1407.3561 (дата звернення: 31.08.2025).<br>8. An improved P2P file system scheme based on IPFS and Blockchain / Y. Chen та ін. 2017 IEEE International<br>Conference on Big Data (Big Data), м. Boston, MA, 11–14 груд. 2017 р. 2017. URL: https://doi.org/10.1109/<br>bigdata.2017.8258226 (дата звернення: 31.08.2025).<br>9. Rateb J. Blockchain for the internet of vehicles: a decentralized iot solution for vehicles communication and<br>payment using ethereum: Дисертація на здобуття ступеня доктора філософії. Париж, Франція, 2021. URL:<br>https://hal.science/tel-03563633 (дата звернення: 31.08.2025).<br>10. Secure messaging platform based on blockchain / U. P. Ellewala та ін. 2020 2nd international conference on<br>advancements in computing (ICAC), м. Malabe, Sri Lanka, 10–11 груд. 2020 р. 2020. URL: https://doi.org/ 10.1109/<br>icac51239.2020.9357306 (дата звернення: 31.08.2025).<br>11. Побережник В., Опірський І. Розробка концепції методу використання технології блокчейн для<br>побудови системи обміну повідомленнями. Захист інформації. 2023. Т. 25, № 2. С. 62–70. URL: https://doi.org/10.<br>18372/2410-7840.25.17673 (дата звернення: 31.08.2025).<br>12. Balatska V., Рoberezhnyk V., Opirskyy I. Use of non-fungible tokens and blockchain to demarcate access to<br>public registries. Cybersecurity: education, science, technique. 2024. Т. 4, № 24. С. 99–114. URL: https://doi.org/10.<br>28925/2663-4023.2024.24.99114 (дата звернення: 31.08.2025).<br>13. Balatska V., Poberezhnyk V. The concept of applying blockchain technologies to increase the security of<br>personal data of the “diya” platform: compliance with the requirements of the gdpr and ukrainian legislation.<br>Cybersecurity: education, science, technique. 2024. Т. 2, № 26. С. 268–290. URL: https://doi.org/10.28925/2663-4023.<br>2024.26.681 (дата звернення: 31.08.2025).<br>14. Turner S., Chen L. Updated security considerations for the MD5 message-digest and the HMAC-MD5<br>algorithms. RFC Editor, 2011. URL: https://doi.org/10.17487/rfc6151 (дата звернення: 31.08.2025).<br>15. Wang X., Yin Y. L., Yu H. Finding collisions in the full SHA-1. Advances in cryptology – CRYPTO 2005.<br>Berlin, Heidelberg, 2005. С. 17–36. URL: https://doi.org/10.1007/11535218_2 (дата звернення: 31.08.2025).<br>16. Content Identifiers (CIDs) | IPFS Docs. IPFS Documentation | IPFS Docs. URL: https://docs.ipfs.tech/<br>concepts/content-addressing/#what-is-a-cid (дата звернення: 31.08.2025).<br>17. Comparative review of selected internet communication protocols / L. Kamiński та ін. Foundations of<br>computing and decision sciences. 2023. Т. 48, № 1. С. 39–56. URL: https://doi.org/10.2478/fcds-2023-0003 (дата<br>звернення: 31.08.2025).<br>18. Ethereum gas and fees: technical overview | ethereum.org. ethereum.org. URL: https://ethereum.org/ en/<br>developers /docs/gas/ (дата звернення: 31.08.2025).<br>19. Fastest blockchains by TPS [2025] | chainspect. Chainspect. URL: https://chainspect.app/dashboard?gainers=<br>false&amp;order=desc&amp;sort=tps (дата звернення: 31.08.2025).</p>Побережник В. О. (Poberezhnyk V.O.)Опірський І. Р. (Opirskyi I.R.)
##submission.copyrightStatement##
2025-10-262025-10-263230242