Технологія забезпечення кібербезпеки хмарного середовища на базі рішення Cisco Cloudlock
DOI: 10.31673/2409-7292.2023.010010
Анотація
У статті розглядаються атаки відмови в обслуговуванні (DDoS), які відбуваються на мережевому рівні систем IoT, та їх вплив на різні аспекти функціонування мереж. Коротко обговорюються сценарії DDoS-атак з використанням пропускної здатності мереж та з використанням системних ресурсів. Аналізуються методи виявлення ботнетів у мережі IoT.
Ключові слова: ботнет, ІоТ мережа, DDoS-атака, кібербезпека.
Перелік посилань
1. Statistical Portal. Internet of Things (IoT) Connected Devices Installed Base Worldwide from 2015 to 2025 (in Billions). Available online: https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/.
2. Dambaye, S.S.; Kolhe, M.V.L. A Survey: Managing Resource-Constrained Devices in IoT. Int. J. Innov. Res. Comput. Commun. Eng. 2016, 4, 21011–21015.
3. Al-Haija, Q.A. On the Security of Cyber-Physical Systems Against Stochastic Cyber-Attacks Models. In Proceedings of the 2021 IEEE International IoT, Electronics, and Mechatronics Conference (IEMTRONICS), Toronto, ON, Canada, 21–24 April 2021; pp. 1–6.
4. Al Dalaien, M.N.; Bensefia, A.; Hoshang, S.A.; Bathaqili, A.R.A.; Xu, X.; Mohanan, V.; Budiarto, R.; Aldmour, I. Internet of Things (IoT) Security and Privacy. In Powering the Internet of Things with 5G Networks; Mohanan, V., Budiarto, R., Aldmour, I., Eds.; IGI Global: Hershey, PA, USA, 2018; pp. 247–267.
5. Albulayhi, K.; Sheldon, F.T. An Adaptive Deep-Ensemble Anomaly-Based Intrusion Detection System for the Internet of Things. In Proceedings of the 2021 IEEE World AI IoT Congress (AIIoT), Seattle, WA, USA, 10–13 May 2021; pp. 187–196.
6. Abu Al-Haija, Q.; Al-Dala’ien, M. ELBA-IoT: An Ensemble Learning Model for Botnet Attack Detection in IoT Networks. J. Sens. Actuator Netw. 2022, 11, 18. https://doi.org/ 10.3390/jsan11010018 7. Basheer Al-Duwairi, Wafaa Al-Kahla, Mhd Ammar AlRefai, Yazid Abdelqader, Abdullah Rawash,Rana Fahmawi. SIEM-based detection and mitigation of IoT-botnet DDoS attacks. International Journal of Electrical and Computer Engineering (IJECE), Vol. 10, No. 2, April 2020, pp. 2182–2191
8. A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti. A Large-Scale Analysis of the Security of Embedded Firmwares. In 23rd {USENIX} Security Symposium ({USENIX} Security 14), pages 95–110, 2014.
9. E. Fernandes, J. Jung, and A. Prakash. Security Analysis of Emerging Smart Home Applications. In 2016 IEEE Symposium on Security and Privacy (SP), pages 636–654. IEEE, 2016.
10. E. Ronen, A. Shamir, A. Weingarten, and C. O’Flynn. IoI Goes Nuclear: Creating a Zigbee Chain Reaction. In 2017 IEEE Symposium on Security and Privacy (SP), pages 195–212. IEEE, 2017.
11. H. Kim, T. Kim, and D. Jang. An Intelligent Improvement of Internet-Wide Scan Engine for Fast Discovery of Vulnerable IoT Devices. Symmetry, 10(5):151, 2018.
12. J. Luo, C. Shan, J. Cai, and Y. Liu. IoT Application-Layer Protocol Vulnerability Detection Using Reverse Engineering. Symmetry, 10(11):561, 2018.
13. Y. Jia, Y. Xiao, J. Yu, X. Cheng, Z. Liang, and Z. Wan. A Novel Graph-based Mechanism for Identifying Traffic Vulnerabilities in Smart Home IoT. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pages 1493–1501. IEEE, 2018.
14. H. Li, Y. He, L. Sun, X. Cheng, and J. Yu. Side-Channel Information Leakage of Encrypted Video Stream in Video Surveillance Systems. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, pages 1–9. IEEE, 2016.
15. N. Apthorpe, D. Reisman, and Nick Feamster. A Smart Home is no Castle: Privacy Vulnerabilities of Encrypted IoT Traffic. arXiv preprint arXiv:1705.06805, 2017. 16. Shu-Hung Lee, Yeong-Long Shiue, Chia-Hsin Cheng, Yi-Hong Li, and Yung-Fa Huang. Detection and Prevention of DDoS Attacks on the IoT. Appl. Sci. 2022, 12(23), 12407; https://doi.org/10.3390/app122312407
17. D. Summerville, K. M. Zach, and Y. Chen. Ultra-Lightweight Deep packet Anomaly Detection for Internet of Things Devices. In 2015 IEEE 34th International Performance Computing and Communications Conference (IPCCC), pages 1–8, Dec 2015.
18. G. Sagirlar, B. Carminati, and E. Ferrari. Autobotcatcher: Blockchain-based P2P Botnet Detection for the Internet of Things. CoRR, abs/1809.10775, 2018.
19. V. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10): P10008, oct 2008.
20. P. Ioulianou, V. Vasilakis, I. Moscholios, and M. Logothetis. A Signature-based Intrusion Detection System for the Internet of Things. 2018.
21. H. R. Shahriari and E. Khoshhalpour. Botrevealer: Behavioral Detection of Botnets based on Botnet Life-Cycle. The ISC International Journal of Information Security, 10(1):55–61, 2018.
22. L. De Carli, R. Torres, G. Modelo-Howard, A. Tongaonkar, and S. Jha. Botnet Protocol Inference in the Presence of Encrypted Traffic. In IEEE INFOCOM 2017 - IEEE Conference on Computer Communications, pages 1–9, May 2017.
23. A. O. Prokofiev, Y. S. Smirnova, and V. A. Surov. A Method to Detect Internet of Things Botnets. In 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pages 105–108, Jan 2018.
24. H. Sedjelmaci, S. M. Senouci, and M. Al-Bahri. A Lightweight Anomaly Detection Technique for LowResource IoT Devices: A Game-Theoretic Methodology. In 2016 IEEE International Conference on Communications (ICC), pages 1–6, May 2016.
25. H. Bostani and M. Sheikhan. Hybrid of Anomaly-based and Specification-based IDS for Internet of Things Using Unsupervised OPF based on MapReduce Approach. Computer Communications, 98:52–71, jan 2017.
26. Basheer Al-Duwairi, Wafaa Al-Kahla, Mhd Ammar AlRefai, Yazid Abdelqader, Abdullah Rawash, Rana Fahmawi. SIEM-based detection and mitigation of IoT-botnet DDoS attacks. International Journal of Electrical and Computer Engineering (IJECE.), Vol. 10, No. 2, April 2020, pp. 2182–2191.