Ідентифікація стану інформаційної безпеки пристроїв ІoТ на базі обробки часових рядів
DOI: 10.31673/2409-7292.2022.030617
Анотація
У статті описується використання часових рядів для математичного опису стану захищеності пристроїв в мережі ІoТ. Аналізуються методи аналізу даних часових рядів з метою отримання значимих статистик та інших характеристик даних.
Ключові слова: ІoТ, часовий ряд, методи аналізу даних, аналіз, інформаційна безпека, системи, мережі.
Перелік посилань
1. Farwell J. P., Rohozinski R. Stuxnet and the Future of Cyber War // Survival. 2011. Vol. 53. № 9. P. 23-40.
2. Yeung D. Y., Ding Y. Host-based intrusion detection using dynamic and static behavioral models // Pattern recognition. 2003. Vol. 36. P. 229-243.
3. Zhang Baoquan, Zou Zongfeng, Liu Mingzheng, Evaluation on security system of internet of things based on Fuzzy-AHP method, E-Business and E-Government (ICEE), 2011 International Conference on 2011, pp. 1 – 5.
4. Schurgot, M.R.; Shinberg, D.A.; Greenwald, L.G., Experiments with security and privacy in networks, World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2015 IEEE 16th International Symposium on, 2015, pp. 1-6.
5. Зикратов И. А., Зикратова Т. В., Лебедев И. С. Доверительная модель информационной безопасности мультиагентных робототехнических систем с децентрализованным управлением // Научно-технический вестник информационных технологий, механики и оптики. 2014. № 2 (90). С. 47-52.
6. Gao D., Reiter M., Song D. Beyond output voting: Detecting compromised replicas using HMM-based behavioral distance // IEEE Transactions on Dependable and Secure Computing. 2009. Vol. 6. № 2. P. 96-110.
7. Макаренко С. И., Олейников А. Я, Черницкая Т. Е. Модели интероперабельности информационных систем // Системы управления, связи и безопасности. 2019. № 4. С. 215-245.
8. Bevir M. K., O’Sullivan V. T., Wyatt D. G. Computation of electromagnetic flowmeter characteristics from magnetic field data // Journal of Physics D Applied Physics. 1981. Vol. 14. № 3. P. 373-388.
9. Semenov V. V., Lebedev I. S., Sukhoparov M. E., Salakhutdinova K. I. Application of an Autonomous Object Behavior Model to Classify the Cybersecurity State. Internet of Things, Smart Spaces, and Next Generation Networks and Systems, 2019, pp. 104-112.
10. Сошникова Л. А., Тамашевич В. Н., Усбе Г., Шефер М. Многомерный статистический анализ в экономике: учебное пособие для вузов. – М.: ЮНИТИ – Дана, 1999. 598 с.
11. Golub T. R. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring // Science. 1999. Vol. 286. P. 531-537.
12. Anderberg M. R. Cluster Analysis for Applications. – Academic Press, New York, 1976. – 376 p.
13. Dembele D., Kastner P. Fuzzy C-means method for clustering microarray data // Bioinformatics. 2003. Vol. 19. № 8. P. 973-980.
14. Fritz H, Garcıa-Escudero LA, Mayo-Iscar A. Tclust: An R package for atrimming approach to cluster analysis. J Stat Softw 2012;47(12):1–26.http://dx.doi.org/10.18637/jss.v047.i12.
15. Ertöz L, Steinbach M, Kumar V. Finding clusters of different sizes, shapes,and densities in noisy, high dimensional data. In: Proceedings of the 2003SIAM international conference on data mining. SIAM; 2003, p. 47–58.http://dx.doi.org/10.1137/1.9781611972733.5.
16. Wehrens R, Buydens L. Self-and super-organizing maps in R: The kohonenpackage. J Stat Softw 2007;21(5):1–19. http://dx.doi.org/10.18637/jss.v021.i05.
17. Ng AY, Jordan MI, Weiss Y. On spectral clustering: Analysis and analgorithm. In: Proceedings of the 14th International Conference on NeuralInformation Processing Systems: Natural and Synthetic, NIPS’01. Cam-bridge, MA, USA: MIT Press; 2001, p. 849–56. http://dx.doi.org/10.5555/2980539.2980649.
18. John CR, Watson D, Barnes MR, Pitzalis C, Lewis MJ. Spectrum: Fastdensity-aware spectral clustering for single and multi-omic data. Bioin-formatics 2020;36(4):1159–66. http://dx.doi.org/10.1093/bioinformatics/btz704.
19. Aggarwal CC, Yu PS. Finding generalized projected clusters in high di-mensional spaces. In: Proceedings of the 2000 ACM SIGMOD internationalconference on management of data. 2000, p. 70–81.
20. Liu, Tianmou & Yu, Han & Blair, Rachael. (2022). Out‐of‐bag stability estimation for k ‐means clustering. Statistical Analysis and Data Mining: The ASA Data Science Journal. 10.1002/sam.11593.
21. Kalia, Khushboo & Dixit, Saurav & Kumar, Kaushal & Gera, Rajat & Epifantsev, Kirill & John, Vinod & Taskaeva, Natalia. (2022). Improving MapReduce heterogeneous performance using KNN fair share scheduling. Robotics and Autonomous Systems. 157. 104228. 10.1016/j.robot.2022.104228.
22. Sriphum, Wiwat & Wills, Gary & Green, Nicolas. (2021). Floptics: A Novel Automated Gating Technique for Flow Cytometry Data. International Journal of Organizational and Collective Intelligence. 12. 10.4018/IJOCI.301561.
23. Sukhdev Singh Ghuman, “Clustering Techniques - A Review,” International Journal of Computer Scienceand Mobile Computing, Vol. 5, Pp. 524-530, 2016
24. Pradeep Rai and Shubha Singh, “A Survey of Clustering Techniques,” International Journal of Computer Applications, Vol. 7, Pp. 1-5, 2010
25. Kavitha V.and Punithavalli M., “Clustering Time Series Data Stream - A Literature Survey,” International Journal of Computer Science and Information Security, Vol. 8, pp. 289-294, 2010.
26. Saroj and Tripti Chaudhary, “Study on Various Clustering Techniques,” International Journal of ComputerScience and Information Technologies, Vol. 6, pp. 3031-3033, 2015.
27. Vijayalaksmi S.and Punithavalli M., “A Fast Approach to Clustering Datasets using DBSCAN and Applications,” Vol. 60, pp. 1-7, 2012.