
Сучасний захист інформації, 2025, № 1(61)                                                                                        ISSN 2409-7292 

_______________________________________________________________ 

© Nikitin D.М., Rybitskyi О.М. (2025). Automated models of software systems for vehicle diagnostics: approach to data integration. 

Сучасний захист інформації, 1(61), 105–112. 

https://doi.org/10.31673/2409-7292.2025.017899. 

105 

UDC 004.45:004.67:004.4 Nikitin D.М., Rybitskyi О.М. 
DOI: 10.31673/2409-7292.2025.017899 

 

AUTOMATED MODELS OF SOFTWARE SYSTEMS FOR VEHICLE DIAGNOSTICS: 

APPROACH TO DATA INTEGRATION 

 
The introduction of the OBD-2 interface provided standardized access to vehicle diagnostic data, enabling real-

time monitoring of the system’s status. Effective utilization of this data requires the development of intelligent algorithms 

capable of analyzing the obtained information while considering signal variability and the probability of faults. One of 

the approaches to improving analysis accuracy is the use of finite state machines (FSMs), which allow structuring the 

decision-making process based on a set of defined states and transitions between them. This study explores the method 

of integrating FSM into OBD-2 data analysis processes to create an automated diagnostic system that enhances fault 

detection accuracy and reduces the number of false-positive results. The proposed diagnostic model employs FSMs to 

build a flexible and scalable logic for analyzing a vehicle's condition. As part of the research, a mathematical FSM model 

was developed, considering the temporal variation of OBD-2 parameters and identifying critical deviations based on 

signal timing characteristics. A software package for system modeling and testing was created, allowing the verification 

of its effectiveness based on both synthetic data obtained in the MATLAB/Simulink environment and simulated scenarios. 

A comparative analysis of fault detection accuracy using the proposed FSM model versus traditional threshold methods 

demonstrated an increase in diagnostic reliability. The testing results showed that fault detection accuracy increased to 

92.2%, while the false-positive rate decreased to 4.1% compared to classical OBD-2 data analysis methods. The proposed 

approach reduced processing delay to 250 milliseconds per diagnostic cycle, making it applicable for real-time fault 

detection. 

Keywords: finite state machine, automotive diagnostics, OBD-2, software architecture, data integration, 

simulation 

 

Introduction and problem statement 

Automated vehicle diagnostic systems are a crucial element of modern automotive 

maintenance, aimed at ensuring timely fault detection, enhancing road safety, and reducing repair 

costs. One of the key standards that allows real-time access to actual operational parameters of 

automotive systems is OBD-2 (On-Board Diagnostics). This system provides a unified interface for 

accessing data from electronic control units (ECUs), enabling diagnostics without the need for vehicle 

disassembly. However, processing OBD-2 data presents several challenges, including significant 

signal variability, the possibility of erroneous faults, and the need for rapid decision-making. 

Traditional methods of OBD-2 data analysis, based on simple comparisons of obtained values 

with predefined thresholds, have significant limitations. They do not account for dynamic parameter 

changes, which may lead to missed faults or the generation of irrelevant alerts. For example, a brief 

engine temperature spike does not always indicate a critical failure, yet the system might register it 

as a fault.  

At the same time, combined faults, where multiple parameters change simultaneously (e.g., 

increased temperature and excessive engine load), might remain undetected by traditional algorithms. 

This highlights the need for more adaptive analytical methods capable of considering the sequence 

of parameter changes, their interdependencies, and temporal characteristics. 

One approach to addressing this issue is the use of finite state machines (FSMs), widely applied 

in control systems and data processing. FSMs allow the diagnostic process to be represented as a set 

of states with transitions between them depending on the current OBD-2 parameter values. This 

approach formalizes decision-making by considering previous system states, significantly improving 

analysis accuracy. FSMs also provide the flexibility to adapt to different vehicle conditions by 

adjusting the transition parameters between states.  

Literature review 

Researchers have long recognized the limitations of threshold-based strategies for automotive 

fault detection. Yadav and Swetapadma illustrated these shortcomings in their paper on transmission 

line diagnostics [1], highlighting how finite-state machines (FSMs) can better classify faults by 

examining the sequence and duration of anomalies rather than just instantaneous values. 
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In the area of Moore FSM design, Solov’ev provides structural models that reveal how to detect 

subtle failures [2] by carefully observing transitions within a state machine. His approach transfers 

readily to automotive diagnostics, where real-time states of system health can shift rapidly due to 

variations in OBD-2 signals. 

When it comes to managing timing issues—for instance, delays and clock drift—Köhl and 

Hermanns proposed a robust method for diagnosing real-time systems [3]. Their work is key for 

OBD-2 scenarios, which often involve streaming data arriving at different intervals, making it 

challenging to interpret sensor values. 

On a more application-oriented note, Górski and Stecz (2024) examined FSM-based models for 

near-real-time testing [4], showing how to break down system operation into clearly defined states 

and transitions. 

In terms of educational resources, MIT OpenCourseWare provides a well-known collection of 

lecture notes on building and verifying state machines, giving an entry point for engineers who want 

to implement FSMs for tasks like OBD-2 data analysis [5]. Similarly, Fuicu implemented FSM 

algorithms for real-time monitoring in IoT settings [6], demonstrating fast response loops, where 

timely intervention can prevent damage or accidents. 

Machine learning also plays a growing role in predictive automotive diagnostics. Gong 

explored various AI-driven strategies to automate fault detection, underscoring the idea that 

combining state-machine logic with data-driven insights could further reduce downtime [7]. 

Bringing these insights together, the study applies FSM principles to OBD-2 data streams, 

showing how well-structured state machines can reduce false positives, enhance detection speed, and 

even anticipate vehicle faults. 

Aim and objectives 

Despite progress in system diagnostic, several challenges remain regarding the integration of 

FSMs and OBD-II. These include the need for real-time processing of large data volumes, ensuring 

compatibility with different vehicle models, and adapting to specific operating conditions. 

The aim of this study is to develop an automated vehicle diagnostic model based on the 

integration of finite state machines (FSMs) with real OBD-2 data to improve fault detection accuracy. 

Traditional methods of diagnostic parameter analysis often fail to account for the sequence of changes 

in vehicle system behavior, leading to false positive or false negative results. 

The proposed approach is to formalize the diagnostic process as a set of states with defined 

transition rules, enabling a more structured and precise fault analysis. Implementing this system will 

enhance the efficiency of vehicle maintenance by reducing the risks of unexpected failures and 

lowering operational costs through early problem detection.  

Furthermore, automating diagnostics with FSMs will allow for the creation of adaptive 

algorithms capable of functioning across various vehicle makes and models, ensuring flexibility and 

scalability of the system. 

To achieve this aim, the study defines the following key objectives: 

1. Analyze existing vehicle diagnostic methods and identify their shortcomings in the context 

of OBD-2 usage. 

2. Develop a mathematical FSM-based diagnostic model that will determine the sequence of 

parameter changes and generate diagnostic conclusions based on structured rules. 

3. Create a software prototype of the FSM system to facilitate real-time acquisition, processing, 

and analysis of OBD-2 data. 

4. Conduct modeling and simulation-based testing of the proposed model using both synthetic 

and virtual data obtained from vehicles simulated in different operational scenarios. 

5. Perform a comparative analysis of the developed FSM model’s efficiency against traditional 

methods, evaluate fault detection accuracy, and optimize the algorithm to enhance performance. 
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6. Formulate recommendations for further development and integration of FSM-based methods 

into diagnostic systems for vehicle servicing and predictive technical condition analysis. 

Presentation of the main material 

The automated vehicle diagnostic system proposed in this study is based on the integration of 

OBD-2 (On-Board Diagnostics) data with finite state machines (FSMs) for accurate analysis of a 

vehicle's technical condition. The primary goal of the system architecture is to develop a flexible and 

adaptive software model that not only identifies current faults but also detects trends in changes to 

the vehicle's systems. To achieve this, a multi-level structural architecture is designed, consisting of 

a data acquisition layer, a processing and analysis layer, and a visualization and decision-making 

layer. The architectural diagram is shown in Figure 1. 

 

 
Figure 1. Architecture of the FSM diagnostic model with OBD-2 

 

At the data acquisition level, the standard OBD-2 interface is used to retrieve diagnostic 

information from the vehicle’s electronic control unit (ECU). In simulation-based settings, these 

OBD-2 parameters are emulated through software tools (e.g., MATLAB/Simulink). Key indicators 

such as engine RPM, coolant temperature, vehicle speed, engine load, oxygen levels in exhaust gases, 

and diagnostic trouble codes (DTCs) are generated in real-time or accelerated-time simulations. This 

setup enables immediate analysis of the vehicle's condition without the variability of physical testing. 

The next level is the data processing and analysis system, where finite state machine (FSM) 

algorithms are applied. The FSM model represents the operation of a vehicle as a set of discrete states, 

with transitions between them based on the analysis of OBD-2 parameters. For example, to detect 

engine overheating, the FSM considers not only the instantaneous temperature value but also the 

historical changes of this parameter over time, which helps eliminate false alerts. 

The FSM is represented as a set of states S, a transition function between them δ and a set of 

input parameters I. Within the FSM model, each state defines normal or deviated system behavior. 

Examples of states include: 

• S0 (normal engine operation) – all parameters are within the normal range. 

• S1 (minor deviation) – engine temperature exceeds the threshold but only for a short period. 

• S2 (critical state) – engine temperature exceeds 110°C for more than 30 seconds, and RPM 

surpasses 4000. 

• Sf (emergency situation) – immediate engine shutdown is required. 
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The equation of the FSM is presented in formula 1: 
 

𝑆t + 1 = 𝛿(𝑆t, 𝐼t), (1) 
 

where St is the current state of the system, and It represents the OBD-2 input parameters at time t. 

This allows the system to identify faults not only based on individual parameter values but also on 

their combinations. 

To ensure the flexibility and scalability of the proposed FSM model, it has been implemented 

as a software module for working with OBD-2 devices (or corresponding simulation data). The 

program code allows for modifying threshold values for each state, enabling adaptation of the 

algorithm to various simulated vehicle conditions. 

The visualization and decision-making layer include the development of a graphical interface 

that displays the vehicle's status in real time. The visual component consists of: 

• FSM state diagram, showing the current operating mode. 

• Real-time updated list of (simulated) OBD-2 parameters. 

• Notification system, alerting users to critical deviations. 

The main advantage of the FSM model is its ability to identify faults not only based on 

instantaneous parameter values but also through the analysis of their sequence. The diagram of the 

FSM model for engine fault diagnostic is shown in Figure 2. 

 

 
Figure 2. FSM diagram for engine fault diagnostic 

 

The FSM model for diagnostics consists of the following main states: 

• S₀ – Normal mode (all parameters are within the normal range). 

• S₁ – Warning state (minor deviations that are not critical). 

• S₂ – Suspected malfunction (the deviation persists for a certain period). 

• Sf – Critical state (a malfunction has been diagnosed, requiring corrective actions). 

The transition function between states is determined based on a combined analysis of 

parameters read via OBD-2. Threshold values for transitions between states are defined for each 

parameter, for example: 

1. Coolant temperature Tcoolant: 

• If Tcoolant < 100°C ⇒ S₀ 

• If 100°C ≤ Tcoolant < 110°C (up to 20 seconds) ⇒ S₁ 

• If Tcoolant > 110°C for more than 30 seconds ⇒ S₂ 

• If Tcoolant > 120°C ⇒ Sf 

2. Engine RPM: 

• If RPM < 2500 ⇒ S₀ 

• If 2500 ≤ RPM < 3500 ⇒ S₁ 

• If RPM ≥ 4000 more than 10 seconds ⇒ S₂ 

• If RPM ≥ 5000 ⇒ Sf 

The combination of these parameters determines the conditions for transitions between FSM 

states. In addition to tracking direct OBD-2 signals, the system introduces a “state confidence factor”, 

which quantifies the certainty of the model’s current state. This factor is dynamically updated based 

on how consistently parameter values match the thresholds for S₀, S₁, S₂, or Sf. By using this extra 
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measure, the FSM can provide more nuanced feedback, such as indicating the likelihood of 

progressing from S1 to S2 if certain warning signs remain persistent. 

To assess critical malfunctions, the model utilizes a risk function (formula 2) that evaluates the 

overall level of parameter deviations from the norm. 

 

𝑅 = 𝑤1 ⋅ 𝑓1(𝐼) + 𝑤2 ⋅ 𝑓2(𝐼) + ⋯ + 𝑤n ⋅ 𝑓n(𝐼), (2) 

 

where wₙ are the weight coefficients of the parameter's significance, and fₙ(I) is the normalization 

function of the input parameter. If R exceeds a certain threshold Rthreshold, the transition to state Sf 

(critical state) occurs. 

An additional enhancement involves a reinforcement learning policy that can fine-tune the 

weights wₙ over time. By feeding historical diagnostic outcomes into a learning module [8], the 

system can gradually emphasize parameters that have proven most reliable to failures, further 

boosting detection precision. 

To verify the effectiveness of the developed FSM-based vehicle diagnostics model, two main 

testing stages were conducted: modeling processes in MATLAB/Simulink and software-based testing 

of vehicles under simulated conditions to replicate varied automotive behaviors. The objective of this 

study was to assess accuracy, response speed, and the rate of false positives compared to traditional 

vehicle parameter analysis methods. 

At the first stage, a digital twin of the diagnostic system was created in MATLAB/Simulink, 

where changes in key OBD-2 parameters were simulated, including coolant temperature, engine 

RPM, oxygen levels in exhaust gases, and diagnostic trouble codes (DTCs). Signal generators were 

used to simulate real vehicle behavior under normal and abnormal operating conditions. 

During modeling, special attention was paid to analyzing the dynamic changes in parameters. 

For instance, during the simulation of engine overheating, a scenario was created where the coolant 

temperature gradually increased from 90°C to 120°C, while engine speed exceeded 4000 RPM. 

Traditional threshold-based analysis methods immediately registered overheating when exceeding 

110°C, whereas the FSM model considered the duration of the parameter staying in the critical zone, 

reducing the number of false positives. 

The next step involved software-based testing intended to replicate real-world conditions as 

closely as possible. For this, four simulated vehicle profiles of different makes and model years were 

created, reflecting typical engine characteristics. Data was collected within each simulation using a 

virtual OBD-2 adapter interface. The data was recorded under various driving conditions: 

• Idling for 5 minutes; 

• City driving at speeds up to 60 km/h; 

• Highway driving at speeds over 100 km/h; 

• Fault simulation (e.g., disabling the MAF sensor). 

For each state predicted by the FSM model, a comparative analysis was conducted between the 

obtained simulated values and the theoretical calculations. For example, during the simulation of 

engine overheating, the FSM identified the state as critical under the condition expressed in formula 

3. 

𝑇coolant >  110°𝐶 𝑓𝑜𝑟 30 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 ∧  𝑅𝑃𝑀 >  3500. (3) 

 

However, certain simulation runs revealed that temperature exceeded 110°C for only 15–20 

seconds before returning to normal. To address this issue, the state transition logic was modified by 

adding a hysteresis function, which required the critical state to persist for at least 25 seconds before 

registering a fault. The modified transition function is shown in formula 4. 

Another important parameter in the FSM model was the determination of increased engine load 

under simulated conditions. Theoretically, the FSM identified an overload state when engine load 

was greater than 80% for 10 seconds. However, data showed that short-term peak loads on the engine 
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were not always indicative of a malfunction. For example, a sudden acceleration could temporarily 

exceed 80%, but this did not necessarily indicate serious technical issues. 

 

𝑆𝑡+1 = {

𝑆2, 𝑖𝑓 𝑇𝑐𝑜𝑜𝑙𝑎𝑛𝑡 > 110°C for 25s
𝑆𝑓 , 𝑖𝑓 𝑇𝑐𝑜𝑜𝑙𝑎𝑛𝑡 > 120°C ∧ RPM > 4000 

𝑆0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (4) 

 

To reduce false diagnoses, a filtering mechanism based on the dynamics of parameter changes 

was added. This adjustment considered not only the absolute load value but also the average rate of 

change over time: 

 
∆𝐿

∆𝑡
 <  5%.  

 

This allowed the system to register an overload only in cases of sustained load increase over a 

certain period, rather than reacting to short-term peaks. 

The experimental results demonstrated that the FSM-based approach reduces false positive 

alerts compared to other methods [9]. For instance, in engine overheating diagnostics the FSM model 

reduced the false alarm rate to 4.1%. Similar improvements were observed in oxygen sensor fault 

analysis and fuel system failure detection. The flexibility of FSM allowed handling different 

simulated vehicle profiles with minimal adjustments [10]. The details of the improvements can be 

seen in table 1. 

 

Table 1 

Comparison of FSM model with Traditional Diagnostic Methods 

 

Method Fault Detection Accuracy Signal Processing Time False Diagnosis Rate (%) 

Threshold 85% 300-600ms 7.5% 

FSM Model 92.2% 250ms 4.1% 

 

One of the key aspects of testing was verifying FSM reliability in complex scenarios, such as 

temporary sensor failures [11]. In many simulated environments, sensors could transmit short-term 

incorrect values, which might interpret as actual faults. The FSM model filtered out such transient 

anomalies and responded only in cases of stable exceedance of critical parameters. 

Another area of testing was the analysis of combined faults, where multiple parameters 

simultaneously exceeded normal limits. For example, a mass airflow sensor (MAF) malfunction 

combined with increased engine RPM could indicate a fuel system issue. In this case, the FSM model 

was able to determine the interdependencies between parameters, comparing to analyzing each 

parameter separately. 

The test results also confirmed the stability of the FSM model across different simulated 

profiles, mirroring popular OBD-2 data transmission protocols (such as CAN, ISO 9141-2, SAE 

J1850) [12]. During testing, several runs showed gradual increases in catalyst temperature and 

instability in oxygen sensor readings, indicating possible fuel system clogging. In the testing 

simulation these changes were detected before diagnostic trouble codes (DTCs) would typically 

appear. 

Conclusions 

The study demonstrated that the use of Finite State Machines (FSM) for OBD-2 data analysis 

significantly enhances the accuracy and speed of vehicle fault diagnostics. The implementation of a 

hysteresis mechanism and cross-parameter analysis enabled the model to consider not only 
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instantaneous diagnostic parameter values but also their dynamics, making the system more resilient 

to temporary deviations and sensor instability. 

The filters for short-term parameter variations embedded in the model reduced the risk of 

erroneous diagnostic decisions, which was previously a common issue in classical OBD-2 data 

processing methods. The alignment of the FSM model with simulated datasets confirmed its high 

efficiency in complex scenarios, such as temporary sensor deviations, peak engine loads, and 

combined faults. 

Moreover, this research suggests a strong potential for integrating multi-agent architectures into 

the FSM framework. In such systems, each critical vehicle subsystem (e.g., powertrain, emission 

control) could operate as a semi-autonomous agent, collaborating with others in real time to vote on 

diagnostic outcomes. This cooperative decision-making can further minimize false alarms and 

generate timely warnings for developing malfunctions. 

The findings of this study confirmed that the integration of an FSM model into OBD-2 based 

tools for automated vehicle diagnostics, offers high accuracy, fast response times, and adaptability to 

different types of vehicles. The developed system architecture ensures flexibility and efficiency, 

making it suitable for use in systems and platforms for vehicle condition monitoring. 

Despite the high efficiency of the FSM framework, some challenges remain, requiring further 

research. One of these is the integration of predictive algorithms based on artificial intelligence, which 

would not only detect faults but also anticipate their potential occurrence before they impact vehicle 

performance. Incorporating machine learning for predicting future malfunctions might further 

improve the safety and efficiency of diagnostic systems. Additionally, future work could focus on 

expanding the range of analyzed parameters, including brake control systems, suspension systems, 

and auxiliary electronic modules, allowing the FSM model to cover a broader spectrum of vehicle 

malfunctions. 

Furthermore, investigating robust cybersecurity measures for protecting OBD-2 data – such as 

encrypted vehicle-to-cloud communication protocols or blockchain-based ledgers could strengthen 

the reliability of remote diagnostics and reduce risks of tampering or data spoofing. By addressing 

these security issues, the next generation of FSM-driven diagnostic platforms can confidently 

integrate connectivity services without compromising data integrity. 
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