2. Атакующая сторона выбирает такие варианты реализации атаки на AC, чтобы у формирующего КСЗИ не хватило финансовых средств для построения эффективной КСЗИ ("тактика истощения").

Для построения эффективной КСЗИ, следует учитывать возможности атакующей стороны, а также возможные стратегии их действий.

Заключение

В перспективе представляется рациональным использовать методы математической теории игр для описания процесса защиты информации как процесса бесконечной антагонистической игры с неполной информацией. При этом могут быть рассмотрены различные стратегии игроков, в том числе вопросы формирования коалиций (как атакующей стороной, так и формирующей КСЗИ АС).

Список литературы

- 1. Грездов Г.Г. Методика построения модели распределенной атаки на автоматизированную систему. Науково-практичний журнал "Сучасна спеціальна техніка", №3, 2009. сс. 82-90.
- 2. Грездов Г.Г. Модифицированный способ решения задачи формирования эффективной комплексной системы защиты информации автоматизированной системы. Монография, Киев ГУИКТ, 2009.- 32 с.
- 3. Грездов Г.Г. Методика построения теста на проникновение в автоматизированную систему, основанная на математической теории игр. Наукові записки українського науково-дослідного інституту зв'язку, 2010, № 3. сс. 88-94.
- 4. Лукацкий А.В. Обнаружение атак. Санкт Петербург: ВНУ, 2001. 611 с.
- 5. Майника Э. Алгоритмы оптимизации на сетях и графах. М.: Мир, 1981. 328 с.
- 6. Мак-Кинси. Д. Введение в теорию игр. Киев: Издательство КВИРТУ, 1959. 347 с.

Рецензент: Корнийчук М.Т. Поступила 26.05.2011

Бессалов А.В., Дихтенко А.А., Третьяков Д.Б.

Сравнительная оценка быстродействия канонических эллиптических кривых и кривых в форме Эдвардса над конечным полем

Введение

В работе профессора университета Нью-Йорка Г. Эдвардса [1] предложена нормальная форма представления эллиптических кривых, которая изучалась еще Абелем в 1828 году. Эта форма, получившая в научном мире название формы Эдвардса, обладает рядом замечательных свойств для криптографических приложений. Одной из первых публикаций в развитие этого направления следует отметить работу [2]. Оказалось, что наряду с симметрией, свойствами полноты и универсальности закона сложения, заменой точки на бесконечности аффинной точкой (нуль группы), кривые Эдвардса среди известных являются наиболее производительными: в проективных координатах групповая операция выполняется минимальным числом 10M + 1S + 1U операций в поле (М - умножение, S — возведение в квадрат, U — умножение на параметр кривой). В настоящей работе мы даем детальный сравнительный анализ вычислительной сложности групповой операции в проективных координатах для кривых в форме Эдвардса и канонической эллиптической кривой над полем характеристики, не равной 2 и 3.

Сложность групповой операции для кривой Эдвардса

В наиболее общем виде кривая Эдвардса над конечным папеч. $\mathbb{F}_2 = (q = p^m)$ характеристики $p \ge 3$ может быть выражена как [2]

$$E_{ED}$$
: $x^2 + y^2 = c^2 (1 + \tilde{d} x^2 y^2), \quad \tilde{d} = c^{-4} d, \, \tilde{d}(1 - \tilde{d} z^4 = 1) \, \tilde{d} = \tilde{d}^2.$ (1)

Закон сложения двух точек этой кривой имеет вид

$$(x_1, y_1) + (x_2, y_2) = \left(\frac{x_1 y_2 + x_2 y_1}{c(1 + dx_1 x_2 y_1 y_2)}, \frac{y_1 y_2 - x_1 x_2}{c(1 - dx_1 x_2 y_1 y_2)}\right)$$
(2)

Варьирование параметра с дает изоморфные кривые, плато с точностью до изоморфизма можно полагать $c=1,\quad \tilde{d}=d$. Наличие 2-х инверсой в 2) заставляет обращаться к проективным координатам [4]. Введем третью в мережент Z как общий знаменатель в (2). Полагаем $x=\frac{x}{z}$, $y=\frac{y}{z}$, тогда гомогениясьюе тренение кривой (1) в проективных координатах имеет вид

 $(X^2 + Y^2)Z^2 = Z^4 + dX^2Y^2$.

Сумма двух точек теперь записывается как $(X_1:Y_1:Z_1-X_2)$ — $(X_3:Y_3:Z_3)$. С учетом подстановок выразим координаты суммарной точуй положение $(X_3:Y_3:Z_3)$

$$x_{3} = \frac{X_{3}}{Z_{3}} = \frac{\left(\frac{X_{1}Y_{2}}{Z_{1}Z_{2}} + \frac{X_{2}Y_{1}}{Z_{1}Z_{2}}\right)\left(1 - d\frac{X_{1}X_{2}Y_{1}Y_{2}}{Z_{1}^{2}Z_{2}^{2}}\right)}{\left(1 + d\frac{X_{1}X_{2}Y_{1}Y_{2}}{Z_{1}^{2}Z_{2}^{2}}\right)\left(1 - d\frac{X_{1}X_{2}Y_{1}Y_{1}Y_{1}}{Z_{1}^{2}Z_{2}^{2}}\right)} =$$

$$= \frac{Z_{1}Z_{2}\left(Z_{1}^{2}Z_{2}^{2} - dX_{1}X_{2}Y_{1}Y_{2}\right)(X_{1}Y_{2} - X_{1}Y_{1})}{(Z_{1}^{2}Z_{2}^{2} + dX_{1}X_{2}Y_{1}Y_{2})(Z_{1}^{2}Z_{2}^{2} - dX_{1}X_{2}Y_{1}Y_{1}})}$$

$$y_{3} = \frac{Y_{3}}{Z_{3}} = \frac{Z_{1}Z_{2}(Z_{1}^{2}Z_{2}^{2} + dX_{1}X_{2}Y_{1}Y_{2})(X_{1}Y_{2} - X_{1}Y_{1})}{(Z_{1}^{2}Z_{2}^{2} + dX_{1}X_{2}Y_{1}Y_{2})(Z_{1}^{2}Z_{2}^{2} - dX_{1}X_{1}Y_{1}Y_{1})}$$

Обозначим:

$$A = Z_1 Z_2$$
; $B = A^2$; $C = X_1 X_2$; $D = Y_1 Y_2$; $E = dCD$ $F = F - F \cdot C = B + E$

$$X_3 = A \cdot F \cdot ((X_1 + Y_1) \cdot (X_2 + Y_2) - C - D),$$

 $Y_3 = A \cdot G \cdot (D - C),$

 $Z_3 = F \cdot G$.

Игнорируя простую операцию сложения (вычитания) в поле, намодельно вычисления суммы различных точек $V_{ED} = 10 \mathrm{M} + 1 \mathrm{S} + 1 \mathrm{U}$. Заметим, что операцию вызывается в квадрат оценивается приблизительно как $1\mathrm{S} \cong \frac{2}{3}\mathrm{M}$ [2].

Нетрудно подобным же образом определить сложность удаженая то так мак $w_{ED} = 3M + 4S$. Экономия в вычислениях здесь достигается заменой солласть из 1 - 1 - 2 - 2 - 2 - 2 - 2 - 3M + $dx_1^2y_1^2$) на $(x_1^2 + y_1^2)$, а $(1 - dx_1^2y_1^2)$ – на $(2 - (x_1^2 + y_1^2))$.

Сложность групповой операции для канонеческой жт в зай

Обратимся теперь к канонической эллиптической кривой выплания $E: y^2 = x^3 + ax + b$, с законом сложения различных точек [4]

Науково-технічний журнал «СУЧАСНИЙ ЗАХИСТ ІНФОРМАЦІЇ» №4, 2011

$$(x_1, y_1) + (x_2, y_2) = \left(\left(\frac{y_2 - y_1}{x_2 - x_1} \right)^2 - x_1 - x_2, -y_1 - \left(\frac{y_2 - y_1}{x_2 - x_1} \right) (x_3 - x_1) \right)$$

В проективных координатах с заменой $x = \frac{x}{z}$, $y = \frac{y}{z}$ имеем

$$\frac{\frac{Y_2}{Z_2} - \frac{Y_1}{Z_1}}{\frac{X_2}{Z_2} - \frac{X_1}{Z_1}} = \frac{u}{v} . \quad u = Y_2 Z_1 - Y_1 Z_2 , \quad v = X_2 Z_1 - X_1 Z_2.$$

Тогла

$$\frac{X_3}{Z_3} = \left(\frac{u}{v}\right)^2 - \frac{X_1}{Z_1} - \frac{X_2}{Z_2} = \frac{Z_1 Z_2 u^2 - v^2 (X_1 Z_2 + X_2 Z_1)}{Z_1 Z_2 v^2} = \frac{vg}{Z_3},$$

где

$$Z_3 = Z_1 Z_2 v^3$$
, $g = Z_1 Z_2 u^2 - v^3 - 2v^2 X_1 Z_2$.

Далее

$$\frac{Y_3}{Z_3} = -\frac{Y_1}{Z_1} + \left(\frac{u}{v}\right) \left(\frac{X_1}{Z_1} - \frac{vg}{Z_1 Z_2 v^3}\right) = \frac{-Y_1 Z_2 v^3 + u(X_1 Z_2 v^2 - g)}{Z_1 Z_2 v^3}$$

Итак, имеем

$$X_3 = vg$$
,
 $Y_3 = -Y_1Z_2v^3 + u(X_1Z_2v^2 - g)$,
 $Z_3 = Z_1Z_2v^3$.

Расчет числа операций дает сложность вычисления суммы точек канонической кривой $EV_E = 12M + 2S$. Аналогичный расчет для удвоения точек приводит к результату [4] $W_E = 7M + 5S$.

Сравнение сложности вычислений для кривых E_{ED} и E

Принимая вычислительную сложность возведения в квадрат 1S = 0.67M, а умножения на параметр кривой 1U = 0.5M, получим оценки сложности сложения и удвоения на кривой Эдвардса $V_{ED} = 11.17$ M, $W_{ED} = 3$ M + 4S= 5.68M. Удвоение, как видим, практически вдвое быстрее сложения. Для канонической эллиптической кривой имеем $V_E = 13.33$ M, $W_E = 10.35$ M. В среднем кривые Эдвардса обеспечивают выигрыш в производительности в $\gamma = (V_E + W_E)/(V_{ED} + W_{ED}) = 1.41$ раза.

При вычислении скалярного произведения rQ точки Q число r представляется в двоичной форме, тогда работает алгоритм последовательного сложения-удвоения, а приведенный результат для γ справедлив при равновероятных 0 и 1 в числе r. Пусть v_0 – относительная частота знаков 0 в двоичной последовательности r, $(1 - v_0)$ – относительная частота знаков 1, тогда в более общей форме выигрыш

$$\gamma = \frac{v_0 W_E + (1 - v_0) V_E}{v_0 W_{ED} + (1 - v_0) V_{ED}} = \frac{10.35 v_0 + 13.33 (1 - v_0)}{5.68 v_0 + 11.17 (1 - v_0)}.$$

При преобладании знаков 0 в числе r, например, со значением $v_0 = 0.75$, получаем выигрыш $\gamma = 1.573$. В пределе для числа $r = 2^m$ максимальный выигрыш достигает значения $\gamma_{max} = 1.82$. Это ясно, так как удвоение выполняется гораздо быстрее сложения точен. При преобладании единиц в последовательности r результат будет обратным. В частности, при $r = 2^m - 1$ минимальный выигрыш равен $\gamma_{min} = 1.193$. Заметим, что приведенные результаты относительно нижней границы γ в некоторой степени условны, так как мы приняли 1U = 0.5M. В частных случаях параметр d, использующийся при вычислении сложения точек, может принимать малые значения, тогда величиной 1U вообще можно пренебречь (при этом $\gamma_{min} = 1.249$).

В заключение резюмируем, что кривые Эдвардса имеют неоспоримые преимущества как перед каноническими эллиптическими кривыми, так и перед другими известными изоморфными формами кривых [5]. Главные из них — быстродействие и удобство программирования. Хотя класс этих кривых приблизительно в 4 раза уже класса всех кривых, их применение в криптосистемах перспективно.

Список литературы

- 1. Edwards H.M. A normal form for elliptic curves. Bulletin of the American Mathematical Society, Volume 44, Number 3, July 2007, Pages 393-422.
- 2. Bernstein Daniel J., Lange Tanja. Faster addition and doubling on elliptic carries IST Programme under Contract IST-2002-507932 ECRYPT, 2007, PP. 1-20.
- 3. Bernstein Daniel J., Lange Tanja, Farashahi R.R. Binary Edwards Curves IST Programme under Contract IST-2002-507932 ECRYPT, 2008, PP.1..23.
- 4. Бессалов А.В., Телиженко А.Б. Криптосистемы на эллиптических кривых Учеб, пособие. К.: IВЦ «Політехніка», 2004. 224с.
- 5. Daniel J. Bernstein, Tanja Lange, Explicit-formulas database (2007). hyperellicitic org EFD.

Ременгент: Дудикевич В.Б. Надійшла 9.06.2011

УДК 621.391

Кувшинов О.В., Жук О.Г., Бортнік Л.Л. Толюпа С.В. (Військовий інститут телекомунікацій та інформатизації Національного технічного університету України "Київський політехнічний інститут", ДУІКТ)

НАПРЯМКИ ВДОСКОНАЛЕННЯ ТЕХНОЛОГІЇ OFDM ПРИ ВПЛИВІ НАВМИСНИХ ЗАВАД

В даний час технологія ортогонального частотного мультиплексування — OFDM (Orthogonal Frequency Division Multiplex) широко застосовується в мережах безпровідного доступу стандартів IEEE 802.11 та IEEE 802.16, системах цифрового радіомовлення T-DAB та DRM, цифрового телебачення DVB-T, xDSL-модемах тощо [1 – 5].

При формуванні OFDM-сигналу інформаційний потік зі швидкістю B ділиться на N паралельних підпотоків, швидкість кожного з яких в N разів менша (B,N). Кожний з цих підпотоків модулює індивідуальну піднесучу, які ортогональні між собою. Спектри сигналів на індивідуальних несучих перекриваються, але завдяки ортогональності сигнали розділяються на прийомі без спотворень. Група несучих частот, яка в даний момент часу переносить біти паралельних цифрових потоків, називається символом OFDM. Для модуляції піднесучих застосовують KAM-M (M-позиційну квадратурну амплітудну модуляцію) або $\Phi M-M$ (M-позиційну фазову модуляцію) [2].